功率谱估计在分析平稳各态遍历随机信号频率成分领域被广泛使用,并且已被成功应用到雷达信号处理、故障诊断等实际工程中。本文给出了经典功率谱估计的几类方法,并通过matlab的实验仿真对经典功率谱估计方法性能进行了分析,最后说明了经典功率谱估计法的局限性和造成这种局限性的原因。
1.引言
给定一个标准的正弦信号,我们可以通过傅里叶变换来分析它的频率成分。然而,实际工程应用中,由于存在着各种干扰、噪声,我们得到的信号往往不是理想的,如图1-1这种信号,具有不确定性,幅度不能预知,非周期,但往往服从一定的统计特性,这种信号叫作随机信号。需要注意的是,本文所说的随机信号是指平稳各态遍历的随机信号,关于非平稳随机信号的分析方法[1]本文不予讨论。
图1-1 一种随机信号时域形式
对于图1-1的随机信号,我们可以通过功率谱来分析它的频率成分,如图1-2所示为图1-1随机信号的功率谱。实际过程中,我们只能获得随机信号的一些离散数据点(假设为n个),本文将讨论如何利用这n个数据点,来得到一个非精确的功率谱来对真实随机信号的功率谱进行估计,并讨论如何更好的估计,即在下一章要讲述的几个经典的功率谱估计法。
图1-2 上图所示的随机信号功率谱
2.经典功率谱估计法
上一章我们已经知道功率谱估计法是通过利用已经获得的n个数据点,来得到一个非精确的功率谱对真实随机信号的功率谱进行估计,所以在给出具体的方法之前,如何来评价我们得出的这个非精确的功率谱的好坏呢?
评价功率谱性能好坏的标准有很多,本文只给出两个影响最大的标准:分辨率和方差。分辨率即功率谱上能够区分的最小相邻频率成分,分辨率越高,我们观察信号的频率成分越清晰;方差大小则反映到功率谱波动性的大小,如果方差太大,功率谱波动性大,则很容易造成有用的频率成分被噪声淹没。所以,我们希望得到的这个非精确的功率谱,分辨率越高越好,方差越小越好。
2.1.2周期图法性能(matlab仿真)
上一小节我们已经给出了周期图法的原理。本节将通过matlab仿真给出数据点数n对功率谱性能好坏的影响,正如上文所述,将通过对所得功率谱的分辨率和方差两方面进行分析。
图2-1 实验所用的随机信号
当数据点数n分别为128、256、512和1024时,得到的功率谱分别如图2-2、图2-3、图2-4和图2-5所示。分辨率能够直观的通过功率谱图形看出,方差的数值由表2-1给出。
表2-1 不同n值得到功率谱的方差值
n
128
256
512
1024
方差
92.7108
130.9109
160.9187
483.5894
通过上面实验结果的比较,我们很容易发现,周期图法得到的功率谱随着数据点数n的增大,分辨率变大、方差变也大。
2.1.3平均周期图法
周期图法得到的功率谱与我们所期望的分辨率大、方差小是矛盾的。为了进一步降低方差,将n个观测样本数据点分为l段,每段数据长度为m, 分别对每段数据求周期图功率谱估计,然后求平均值,这种方法称平均周期图法。
2.1.4平均周期图法性能(matlab仿真)
当数据点数n为1024,分段数分别为8、4、2时,平均周期图法得到的功率谱分别如图2-6、图2-7、图2-8所示。分辨率能够直观的通过功率谱图形看出,方差的数值由表2-2给出。
表2-2 不同l值得到功率谱的方差值
l
8
4
2
1
方差
96.3756
190.9647
400.6464
483.5894
l=1时,平均周期图法退化为周期图法。通过上面实验结果的比较,我们很容易发现,平均周期图法得到的功率谱随着分段数l变大,方差变小,但分辨率变小。
当观测样本序列数据个数n固定时,要降低方差需要增加分段数l。当n不大时分段长度m取值较小,则功率谱分辨率降低到较低的水平。若分段数l固定时,增加分辨率需要分段长度m,则需要采集到更长的检测数据序列。实际中恰恰是检测样本序列长度不足。
2.1.5修正的平均周期图法
上一节已经提到实际中检测样本序列长度是有限的。对现有数据长度n,如果能获得更多的段数分割,将会得到更小的方差。允许数据段间有重叠部分,来得到更多的段数。对段间重叠长度的选取,最简单是取为段长度m的一半。由式(2-5)可知更多的段数可以进一步降低方差。
数据截断的过程中相当于数据加矩形窗,矩形窗幅度较大的旁瓣会造成频谱泄漏。我们分段时采取的窗函数更为多样(三角窗,海明窗等), 以减小截断数据(加矩形窗)窗函数带来的影响[2]
2.1.6修正的平均周期图法性能(matlab仿真)
利用修正平均周期图法,分别使用矩形窗、blackman窗和hamming窗得到的功率谱如图2-9所示。
图2-9 不同窗函数的修正平均周期图法得到的功率谱
可以发现,矩形窗的分辨率最高,但是方差也最大,这是由于矩形窗频谱主瓣最窄,分辨率因此最高,旁瓣也高,导致频谱泄漏最严重,方差最大。
2.1.7总结
周期图法获得的功率谱随着样本点数越多,分辨率越大、方差越大;平均周期图法以牺牲分辨率来进一步改善方差;修正的平均周期图法允许段的重叠来进一步增大分段数、或者分段数相同,每段样本点数变多。无论是哪种方法都没有彻底结局方差与分辨率之间的矛盾。
2.2相关功率谱估计法-bt法
正如我们之前介绍的,要提高功率谱估计的分辨率,必须增加数据序列的长度n,但是较长的数据序列,由噪声引起的随机性得到更为充分的体现-较大的方差。事实上,当n无穷大时,方差为一非零常数。即周期图法无法实现功率谱的一致估计。而这节讲述的相关功率谱估计法(下文称作bt法),是一致估计。
2.2.1 bt法的原理
维纳辛钦定理指出,随机信号的相关函数与它的功率谱是一对傅里叶变换对。bt法就是基于这个原理。先由观测数据估计出自相关函数,然后求自相关函数的傅立叶变换,以此变换作为对功率谱的估计,也称为间接法。bt法要求信号长度n以外的信号为零,这也造成bt法的局限性。
2.2.2 bt法的性能(matlab仿真)
数据点数n分别为128、256、512和1024的bt法,得到的功率谱如图2-10、图2-11、图2-12和图2-13所示。
图2-13 n=1024时,bt法得到的功率谱
由上面实验可以发现,m随着n的增大而增大时,分辨率提高,方差变大。bt法仍然没有解决分辨率与方差之间的矛盾,但是bt法得到的功率谱当n为无穷大时,方差会趋向于零,即为一致估计[2]。
2.2.3 周期图法与bt法的关系
结 论
本文通过matlab仿真,以一个具体的随机信号为例,简单介绍了周期图法、平均周期图法、修正的平均周期图法以及bt法的基本原理,并对这些方法的性能进行分析。可以看出,无论是周期图法及其改进算法还是bt法都没有从根本上解决分辨率与方差的矛盾。经典功率谱估计是利用傅里叶变换估计功率谱,而我们之前分析随机信号不满足傅里叶变换的条件,所以经典功率谱估计方法不得不从无限长数据点截取有限长数据点,加入限制条件(周期图法实际上假定n点外数据周期重复、bt法假定n点外数据为零)来强制作傅里叶变换,这也是造成它局限性的原因。
参考资料
[1]朱哲,钟宏伟. 非平稳随机信号分析处理方法研究[j] 安徽电子信息技术学院学报2008.6:28-28
[2]皇甫堪.现代数字信号处理[m].电子工业出版社
单片机的学习实践
关于人体高速无线通信与无线控制技术的新研究
关于华芯通芯片“升龙”的性能分析和应用
智能机行业是如何进化的?为何增长放缓?
八种modbus rtu数据帧格式详细介绍
基于Matlab实验仿真对经典功率谱估计性能分析
华天科技公布南京集成电路投资项目进展
文思海辉企业风险管理平台实现业绩增长和风险控制双平衡
锂亚电池的应用范围有哪些
汽车内饰品为什么需要用到高低温试验箱
倒装芯片封装技术起源于哪里 倒装芯片封装技术的优缺点有哪些
微软上季获利暴减22%
Redmi K30S 至尊纪念版的指关节操作功能下放
详解半导体知识产权现状:《2022年中国半导体知识产权白皮书》即将发布
多通道农残快速检测仪在农业领域中的应用分析
雷克沙展示旗下首款PCIe 4.0 SSD 读取速度达到7GB/s
Android应用开发,你需要这些工具
甘肃移动和酒泉钢铁公司联合建设的5G无人矿车项目已正式投入使用
一文详解Apple芯片组的新功能
再创佳绩!Cadence连续11年蝉联中国IC设计成就奖之年度卓越表现EDA公司