单片集成MEMS电容式压力传感器接口电路设计

1 引 言
单片集成是mems传感器发展的一个趋势,将传感器结构和接口电路集成在一块芯片上,使它具备标准ic工艺批量制造、适合大规模生产的优势,在降低了生产成本的同时还减少了互连线尺寸,抑制了寄生效应,提高了电路的性能。
本文介绍的单片集成电容式压力传感器,传感器电容结构由多晶硅/栅氧/n阱硅构成,并通过体硅腐蚀和阳极键合等后处理工艺完成了电容结构的释放和腔的真空密封。接口电路基于电容一频率转化电路,该电路结构简单,并通过“差频”,消除了温漂和工艺波动的影响,具有较高的精度。
2 接口电路原理及特性
接口电路原理图和流水芯片照片如图1所示。该电路由两部分组成:电容一频率转化电路和差频电路。本电路采用张驰振荡器来实现电容-频率转化。张驰振荡器由电流源、cmos传输门、施密特触发器构成。电路分为充电周期和放电周期。工作原理如下:假设最初vout高电平,则开关s11闭合,s12断开,电路进入充电周期,电流源i对cs进行充电,当cs上的电压vcs充电至施密特触发器高阈值电平vh时,施密特触发器发生翻转,vout变为低电平,此时s11断开,s12闭合,电路进入放电周期,电流源对cs进行放电,当电容上电压vcs下降到施密特低阈值电平vl时,输出再次翻转,vout变为高电平,电路又进入充电周期。如此循环,该部分电路输出一列频率与电容cs相关的方波,实现了电容-频率的转化。为了实现差频功能,引进了参考电容cr,并通过相同的g-f电路完成参考电容到参考频率fs的转化。d触发器则用于实现信号频率fs与参考频率fr的差值,实现差频电路功能。接口电路最后输出频率
式中:cs为压力传感器敏感电容;cr为参考电容;i为充放电电流;vh,vi分别为施密特触发器的高、低阈值电平。
使用pspice对电路特性进行模拟,图2给出了接口电路的误差特性曲线。从图2中可以看出:参考频率为100 khz左右时,电路输出相对误差较小;参考频率与传感器频率之差越小,电路的输出精度越高。设计电路时,通过调整充放电电流i,使得参考频率工作在100 khz左右,同时通过合理设置参考电容cr的大小,使得传感器频率和参考频率差值尽可能小,以保证电路获得较高精度。
综合考虑芯片面积、传感器灵敏度和功耗因素,传感器敏感电容设计为800 μm×800μm,初值电容为1104 pf,压力测量范围为80~110 kpa,在该量程内,传感器电容由1207.4 pf变化到1220.5 pf。参考电容设计为1222 pf,以保证参考频率和传感器频率差值尽可能小。充放电电流设计值为400μa,使得参考频率fs工作在100 khz附近(见式(1))。为保证电路具有较高的噪声容限,施密特触发器的高低阈值电平设计为vh=3v,vl=1v,图3仿真了量程范围内电容响应曲线及接口电路输出频率。芯片在无锡58所1 μm工艺线流水,见图1(b)。
3 接口电路测试及分析
施密特触发器和d触发器是电容接口电路的核心模块,对上述电路进行功能测试的结果如下:
图4(a)给出了施密特触发器的传输特性,由图4得到施密特触发器低阈值电平vl=1.1 v、高阈值电平vh=3.05 v,与设计值基本符合。
图4(b)给出了d触发器的测试结果,在fd=100.1 khz,fck=98.04 khz条件下,输出频率fout=2.06 khz,fout与(fd-fck)=2.062(khz)的值近似。表1给出了对应于几组不同的fd和fck差频电路的测试结果。结果表明,差频电路在符合2/3fd对电路进行优化设计时,将传感器电容转化后的频率与参考电容转化后的频率值满足以上条件,可以获得较高的精度。
4 结 论
仿真和测试结果均表明,通过差频,电路可以获得较高的精度。同时较大的传感器初值电容(1104 pf)有利于抑制寄生电容的影响,为接口电路设计带来了方便。在80~110 kpa压力范围内,接口电路的分辨率约为3.77 hz/hpa。

半导体协会SIA表示:2017年集成电路将迎来重大调整变革
常用光电编码器有哪些,光电编码器原理分析
简化下一代物联网应用的雷达开发
政策加码,AI企业加速上市
vivo中心实验室获TÜV莱茵授权实验室资质
单片集成MEMS电容式压力传感器接口电路设计
显示技术三强并立 LED显示未来可期
魅族Pro7超憋屈:魅蓝新机将带副屏,便宜太多!
NE555引脚图及应用电路
六六顺——东南大学文章总汇 | 科技老兵戴辉
亚马逊云科技携手西门子运用生成式AI之力,打破数据孤岛
电销机器人是什么,它的作用是什么
在芯片短缺的情况下,公司押注 RISC-V
三维硅MEMS结构的灰阶微加工 光刻和深反应离子蚀刻
几种试验用电源,Experimental power supply
桥接模式的目标与设计
GaN功率电子器件的技术路线
360快充拆解,原来你是这样的架构
光晶体管
基本共射极放大电路电路分析