市场趋势
信号发生器(又名频率合成器)是几乎所有射频/微波测试测量系统的关键设备。它产生一个刺激信号或被用作接收器侧的本振子。信号发生器广泛应用于各种电子设备和系统的测试、维修和故障排除。根据市场咨询公司frost & sullivan的预测,信号发生器将是未来几年全球测试测量市场增长最快的领域之一。需求将受到无线通信、航空航天和国防、汽车以及5g等新技术的推动。微波信号发生器的总市场预计约为3亿美元,年增长率约为7%。信号发生器市场的高频部分(大于26.5 ghz)的增长将是最高的。这代表着信号发生器市场的一个重大变化,因为目前大部分销售收入是由低于6 ghz频率段产生的。 总的来说,业界一直面临着设计出更高性能的信号发生器的压力。理想的发生器应该是具有良好频率分辨率的宽带,允许处理更广泛的潜在应用。除了频率覆盖范围和分辨率外,相位噪声和杂散性能也是限制系统分辨小振幅信号能力的关键参数。影响整个系统性能的另一个关键参数是频率切换速度。在频率之间转换的时间越来越宝贵。例如,在100µs内切换频率的发生器比在1ms内切换频率的发生器具有更高的测量容量。与使用较慢的发生器进行单次测量相比,更快的切换发生器可提供十倍的吞吐量和更高的产品产量。然而,今天的系统要求快速的开关速度和低相位噪声的性能,历史上与较慢的频率开关发生器有关。 此外,从传统的模拟信号调制到如今的复杂矢量调制,都需要复杂的波形。由于如新一代无线蜂窝技术5g等新技术出现,预计市场需求将向更高的工作频率和更宽的调制带宽转变。
体系架构
微波信号发生器是最具挑战性的高频设计之一。发生器的特性很大程度上取决于一个特定的体系结构,该体系结构可以分为几个主要的组别,如图1所示。直接结构旨在直接从可用基频创建输出信号,通过在频域中操纵和组合这些基频(直接模拟合成)或通过在时域中构造输出波形(直接数字合成)。间接方法假设输出信号在发生器内以输出频率与输入参考信号相关(例如,锁相)的方式再生。类似地,间接合成可以用模拟和数字技术来实现。然而,一个实用的发生器通常是一种混合设计,它结合了各种技术,以充分利用每种技术的优点。
直接模拟发生器是通过混合一些固定频率的基频信号,然后用开关滤波器实现的,如图2所示。直接模拟发生器的主要优点是开关速度极快,从微秒到纳秒不等。另一个显著的优点是能够产生低相位噪声,这是由于使用了与基频源相比可以忽略的低残留噪声的组件。因此,直接模拟发生器的相位噪声主要取决于可用固定频率源的噪声,并且可能非常低。该拓扑的主要缺点是频率覆盖范围有限,步长小,成本高。可以通过使用更多的基频和/或混频器级来增加输出频率的数量。然而,这会迅速增加设计复杂性和整体组件数量。另一个严重的问题是混频器级产生大量不希望的杂散产物。这些杂散必须被彻底过滤,这对于特定发生器频率计划开发来说是一个严重的挑战。
图2 直接模拟发生器概念
另一种有希望的方法是基于发生器工作频率带宽的连续扩展的概念。如图3所示,这种发生器结构包括几个级联,包括可编程分频器、混频器和带通滤波器(或开关滤波器组)。利用可编程分频器产生的几个本振频率。输入频率带宽和分频系数的选择方式为∆
HTC VivePort向Oculus开发,两大VR巨头正式联手
移动应急通信中自动选频的实现
酒店大堂使用机器人好不好
地平线与合作伙伴通力协作促成企业的生态合作与共创共赢
镀层测厚仪工作原理
一文解析测试测量的微波信号源技术
Virtuoso中使用skill脚本实现不同pdk的替换
印刷电路板的焊接工艺及详细焊接流程介绍
基于arm的指纹识别门禁系统是如何设计的
卡西欧创新型可拆卸自由式相机采用赛普拉斯触摸屏控制器及MoBL SRAM
吉时利源表仪器的安全操作指南
如何在ESP32/ESP8266上使用MicroPython
物联网技术打造智能安全监控系统 lora技术深耕水库管理
ST推出单片机顶盒芯片STi5197L
浅析共面波导效应对微带传输线的影响
美军事官员称5G将在太空通信中发挥重要作用
DP83640同步以太网模式:在PTP应用中实现次纳秒精度
基于数字微流控与表面增强拉曼的超灵敏自动化免疫检测的新仪器新方法
探讨推动了连接器技术创新背后的真正原因
2019年校招,科技巨头抢AI人才大战到境外