什么是 GaN 氮化镓?2

为什么比 si 好?
——半导体发展史
硅作为第一代「半导体材料」的典型代表,其技术与应用发展到如今已经是炉火纯青,甚至于,目前全球 95% 以上的半导体芯片和器件都是用硅片作为基础功能材料而生产出来。
但我们需要知道,任何材料其性能和效率都存在一个理论极限,随着硅材料技术的日臻佳境的发展,硅在光电子领域和高频高功率器件方面的诸多限制也开始体现出来。
也就是说,硅的性能已经开始跟不上各种应用场景的需求了。根本原因就在于硅本身的带隙较窄、电子迁移率和击穿电场较低。
当材料技术的发展遭遇瓶颈,那么我们必将寻求新的代替者,获得更加优秀的解决方案。在这条关于更高性能的探索路上就开始了——
半导体材料的发展史
第一代:元素半导体
典型如硅基和锗基半导体。其中以硅基半导体技术较成熟,应用也较广,一般用硅基半导体来代替元素半导体的名称。
以硅材料为代表的第一代半导体材料,它取代了笨重的电子管,导致了以集成电路为核心的微电子工业的发展和整个 it 产业的飞跃,广泛应用于信息处理和自动控制等领域。
第二代:化合物半导体
20 世纪 90 年代以来,随着移动通信的飞速发展、以光纤通信为基础的信息高速公路和互联网的兴起,以砷化镓( gaas )、磷化铟( inp )为代表的第二代半导体材料开始崭露头脚。
gaas、inp 等材料适用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料,广泛应用于卫星通讯、移动通讯、光通信、gps 导航等领域。
但是 gaas、inp 材料资源稀缺,价格昂贵,并且还有毒性,污染环境,这些缺点使得第二代半导体材料的应用具有很大的局限性。
第三代:宽禁带半导体
第三代半导体包括碳化硅(sic)、氮化镓(gan)、氮化铝(aln)、氧化镓(ga2o3)等。
它们的禁带宽度在 2.3ev 以上,其中又以 sic 碳化硅和 gan 氮化镓为代表。
与前两代半导体材料相比,第三代半导体材料禁带宽度大,具有击穿电场高、热导率高、电子饱和速率高、抗辐射能力强等优越性质,翻译下来就是:
高频、高效、高功率、耐高压、耐高温、抗辐射能力强。
凭借极优越的性能和巨大的市场前景,第三代半导体材料正在成为全球半导体市场争夺的焦点。
宽禁带材料「双子星」
——不得不说的 sic
目前来看,sic 和 gan 的技术研究进展较快,并且已经开始有了广泛应用。sic 与 gan 相比较,前者相对 gan 发展更早一些,技术成熟度也更高一些。
sic 禁带宽度为 3.23ev,gan 禁带宽度为 3.4ev。
sic 器件相对于 si 器件的优势主要来自三个方面:
降低电能转换过程中的能量损耗更容易实现小型化更耐高温高压据了解,sic 功率器件的能量损耗只有 si 器件的 50%,发热量只有 si 器件的 50%,且有更高的电流密度。
在相同功率等级下,sic 功率模块的体积显著小于 si 功率模块。
听上去是不是和 gan 很像?
没错,这是两者材料特性决定的,在很多性能上 sic 和 gan 具有十分相似的表现。
那么问题来了——
为什么我们的充电器用的都是 gan 而不是 sic 呢?
两者有一个很大的区别是热导率。
这使得在高功率高温等极限场景应用中,sic 占据统治地位;而 gan 具有更高的电子迁移率,因而能够比 sic 或 si 具有更高的开关速度,在高频率应用领域,gan 具备优势。
简单来说就是,sic 如果用在我们日常的手机充电器上,其实有点大材小用,这其中也牵扯到成本的问题,综合下来其实 gan 更为合适。
那么 sic 的主要应用场景是?
sic 是由硅和碳组成的化合物半导体材料,在热、化学、机械方面都非常稳定,这使得它可以被用在非常极端的环境条件下。
针对于 sic,微波及高频和短波长器件是目前已经成熟的应用市场。
在电力电子领域,sic 应用市场最大的驱动力,可能来自于新能源汽车。
事实上 sic 已经被应用的典型市场包括:轨交、功率因数校正电源(pfc)、风电(wind)、光伏(pv)、新能源汽车(ev/hev)、充电桩、不间断电源(ups)等。
sic 器件如何提升电动汽车的系统效率
新能源车的功率控制单元(pcu)是汽车电驱系统的中枢神经,管理电池中的电能与电机之间的流向、传递速度。
传统 pcu 使用硅基材料半导体制成,强电流与高压电穿过硅制晶体管和二极管的时的电能损耗是混合动力车最主要的电能损耗来源。
而使用 sic 则大大降低了这一过程中能量损失,同时也可以大幅降低器件尺寸,车身可以设计得更为紧凑。
所以 sic 和 gan 在很多关键特性上看上去像是「两兄弟」,但其实目前它们正在各自擅长的领域发着不同的光。
gan 有着更强的成本控制,sic 则能够胜任更极限的环境条件。

主流A/D转换芯片学习详解(1):美信MAX197
三星天翼3G旗舰W799评测
关于世界顶尖锂电池研究团队及研究方向的介绍
华为5G Polar码为何被力挺?听通信工程师的大实话
led3mm和5mm区别 共阳5mm发光二极管参数
什么是 GaN 氮化镓?2
如何精确的计量分析并设计三相智能电表非线性负载?
英特尔终止了与紫光展锐在5G芯片上的合作伙伴关系
变电所开关室SF6环境综合监控系统的组成及工作原理
新型电力系统发展蓝皮书发布,氢能发展安全不容忽视!
关于为Simulink模型添加注解的五种方式分析和介绍
微软封禁员工讨论OpenAI DALL-E 3模型漏洞
适合新手使用的5款超简单电路图制作软件
苹果春季发布会定于3月23日举行,但不会发布AirPods3
NVIDIA RTX 3080库存不足或不足
洲明科技首次打造裸眼3D灯光秀推动体育产业发展
天线的基本概念
阿迪达斯与 Covision Media 使用 AI 和 NVIDIA RTX 创建逼真的 3D 内容
5G手机强势来袭,FPC连接器将迎来发展新机遇
HMS医康链+区块链结合,推动智能医疗发展