深刻理解DC-DC和LDO的原理和区别

ldo: 
低压差线性稳压器,故名思意为线性的稳压器,仅能使用在降压应用中,也就是输出电压必须小于输入电压。
优点:稳定性好,负载响应快,输出纹波小。
缺点: 效率低,输入输出的电压差不能太大,负载不能太大,目前最大的ldo为5a,但要保证5a的输出还有很多的限制条件。
dc/dc: 
直流电压转直流电压,严格来讲,ldo也是dc/dc的一种,但目前dc/dc多指开关电源,具有很多种拓朴结构,如buck,boost等。
优点: 效率高,输入电压范围较宽。
缺点: 负载响应比ldo差,输出纹波比ldo大。
那么,dc/dc和ldo的区别是什么?
dc/dc转换器一般由控制芯片,电杆线圈,二极管,三极管,电容构成, dc/dc转换器为转变输入电压后有效输出固定电压的电压转换器。dc/dc转换器分为三类: 升压型dc/dc转换器、降压型dc/dc转换器以及升降压型dc/dc转换器。 
根据需求可采用三类控制:
pwm控制型效率高并具有良好的输出电压纹波和噪声;
pfm控制型即使长时间使用,尤其小负载时具有耗电小的优点;
pwm/pfm转换型小负载时实行pfm控制,且在重负载时自动转换到pwm控制。
目前dc-dc转换器广泛应用于手机、mp3、数码相机、便携式媒体播放器等产品中。
dc-dc简述原理
其实内部是先把dc直流电源转变为交流电电源ac,通常是一种自激震荡电路,所以外面需要电感等分立元件。 然后在输出端再通过积分滤波,又回到dc电源,由于产生ac电源,所以可以很轻松的进行升压跟降压。 两次转换,必然会产生损耗,这就是大家都在努力研究的如何提高dc-dc效率的问题。 
对比
dctodc包括boost(升压)、buck(降压)、boost/buck(升/降压)和反相结构,具有高效率、高输出电流、低静态电流等特点,随着集成度的提高,许多新型dc-dc转换器的外围电路仅需电感和滤波电容,但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。
ldo低压差线性稳压器的突出优点是具有最低的成本,最低的噪声和最低的静态电流,它的外围器件也很少,通常只有一两个旁路电容,新型ldo可达到以下指标:30μv输出噪声、60dbpsrr、6μa静态电流及100mv的压差。
ldo简述原理 
线性稳压器能够实现这些特性的主要原因在于内部调整管采用了p沟道场效应管,而不是通常线性稳压器中的pnp晶体管。p沟道的场效应管不需要基极电流驱动,所以大大降低了器件本身的电源电流。 另一方面,在采用pnp管的结构中,为了防止pnp晶体管进入饱和状态降低输出能力,必须保证较大的输入输出压差。 而p沟道场效应管的压差大致等于输出电流与其导通电阻的乘积,极小的导通电阻使其压差非常低。
当系统中输入电压和输出电压接近的时候,ldo是最好的选择,可达到很高的效率。 所以在将锂离子电池电压转换为3v电压的应用中大多选用ldo,尽管电池最后放电能量的百分之十没有使用,但是ldo仍然能够在低噪声结构中提供较长的电池寿命。 
便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。 比如单体锂离子电池充足电时的电压为4.2v,放完电后的电压为2.3v,变化范围很大。
各种整流器的输出电压不仅受市电电压变化的影响,还会受负载变化的影响, 为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。 小型精密电子设备还要求电源非常干净,要无纹波、无噪声,以免影响电子设备正常工作。 为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波。
01   ldo的基本原理    
低压差线性稳压器(ldo)的基本电路如图1-1所示,该电路由串联调整管vt(pnp晶体管,注:实际应用中,此处常用的是p沟道场效应管)、取样电阻r1和r2、比较放大器a组成。
图1-1低压差线性稳压器基本电路 
取样电压uin,加在比较器a的同相输入端,与加在反相输入端的基准电压uref(uout*r2/(r1+r2))相比较, 两者的差值经放大器a放大后,uout=(u+-u-)*a注a为比较放大器的倍数,控制串联调整管的压降,从而稳定输出电压。 当输出电压uout降低时,基准电压uref与取样电压uin的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。
相反,若输出电压uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。 供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。 应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用mosfet。
02   低压差线性稳压器的主要参数     
1.输出电压 
输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。 低压差线性稳压器有固定输出电压和可调输出电压两种类型,固定输出电压稳压器使用比较方便,而且由于输出电压是经过厂家精密调整的,所以稳压器精度很高。 但是其设定的输出电压数值均为常用电压值,不可能满足所有的应用要求,但是外接元件数值的变化将影响稳定精度。 
2.最大输出电流 
用电设备的功率不同,要求稳压器输出的最大电流也不相同,通常,输出电流越大的稳压器成本越高。 为了降低成本,在多颗稳压器组成的供电系统中,应根据各部分所需的电流值选择适当的稳压器。 
3.输入输出电压差 
输入输出电压差是低压差线性稳压器最重要的参数,在保证输出电压稳定的条件下,该电压压差越低,线性稳压器的性能就越好。 比如,5.0v的低压差线性稳压器,只要输入5.5v电压,就能使输出电压稳定在5.0v。 
4.接地电流 
接地电路ignd是指串联调整管输出电流为零时,输入电源提供的稳压器工作电流。 该电流有时也称为静态电流,但是采用pnp晶体管作串联调整管元件时,这种习惯叫法是不正确的,通常较理想的低压差稳压器的接地电流很小。 
5.负载调整率 
负载调整率可以通过图2-1和式2-1来定义,ldo的负载调整率越小,说明ldo抑制负载干扰的能力越强。
图2-1outputvoltage&outputcurrent
(2-1)
式中:
△vload—负载调整率;
imax—ldo最大输出电流;
vt—输出电流为imax时,ldo的输出电压;
vo—输出电流为0.1ma时,ldo的输出电压;
△v—负载电流分别为0.1ma和imax时的输出电压之差。
6.线性调整率
线性调整率可以通过图2-2和式2-2来定义,ldo的线性调整率越小,输入电压变化对输出电压影响越小,ldo的性能越好。
图2-2outputvoltage&inputvoltage
(2-2)
式中:
△vline—ldo线性调整率;
vo—ldo名义输出电压;
vmax—ldo最大输入电压;
△v—ldo输入vo到vmax'输出电压最大值和最小值之差。
7.电源抑制比
ldo的输入源往往有着许多干扰信号的存在,psrr反映了ldo对于这些干扰信号的抑制能力。 
03   ldo的典型应用    
低压差线性稳压器的典型应用如图3-1所示,图3-1(a)所示电路是一种最常见的ac/dc电源,交流电源电压经变压器后,变换成所需要的电压,该电压经整流后变为直流电压。 在该电路中,低压差线性稳压器的作用是:在交流电源电压或负载变化时稳定输出电压,抑制纹波电压,消除电源产生的交流噪声。
各种蓄电池的工作电压都在一定范围内变化,为了保证蓄电池组输出恒定电压,通常都应当在电池组输出端接入低压差线性稳压器,如图3-1(b)所示。
低压差线性稳压器的功率较低,因此可以延长蓄电池的使用寿命, 同时,由于低压差线性稳压器的输出电压与输入电压接近,因此在蓄电池接近放电完毕时,仍可保证输出电压稳定。 众所周知,开关性稳压电源的效率很高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响。
在开关性稳压器输出端接入低压差线性稳压器,如图3-1(c)所示,就可以实现有源滤波,而且也可大大提高输出电压的稳压精度,同时电源系统的效率也不会明显降低。
在某些应用中,比如无线电通信设备通常只有一足电池供电,但各部分电路常常采用互相隔离的不同电压,因此必须由多只稳压器供电。 为了节省供电池的电量,通常设备不工作时,都希望低压差线性稳压器工作于睡眠状态,为此,要求线性稳压器具有使能控制端。 有单组蓄电池供电的多路输出且具有通断控制功能的供电系统如图3-1(d)所示。
图3-1低压差线性稳压器(ldo)典型应用 
04   dc-dc 应当可以这样理解    
dc-dc的意思是直流变(到)直流,即不同直流电源值的转换,只要符合这个定义都可以叫dcdc转换器,包括ldo。 但是一般的说法是把直流变(到)直流由开关方式实现的器件叫dcdc。dc-dc转换器包括升压、降压、升/降压和反相等电路,dc-dc转换器的优点是效率高、可以输出大电流、静态电流小。 随着集成度的提高,许多新型dc-dc转换器仅需要几颗外接电感器和滤波电容器。
但是,这类电源控制器的输出脉动和开关噪音较大、成本相对较高,近几年来,随着半导体技术的发展,表面贴装的电感器、电容器、以及高集成度的电源控制芯片的成本不断降低,体积越来越小。 由于出现了导通电阻很小的mosfet可以输出很大功率,因而不需要外部的大功率fet。 例如对于3v的输入电压,利用芯片上的nfet可以得到5v/2a的输出,其次,对于中小功率的应用,可以使用成本低小型封装。 另外,如果开关频率提高到1mhz,还能够降低成本、可以使用尺寸较小的电感器和电容器。 有些新器件还增加许多新功能,如软启动、限流、pfm或者pwm方式选择等。
总的来说,升压是一定要选dcdc的,降压,是选择dcdc还是ldo,要在成本,效率,噪声和性能上比较。
05   ldo与dc/dc对比    
首先从效率上说,dc/dc的效率普遍要远高于ldo,这是其工作原理决定的。 其次,dc/dc有boost、buck、boost/buck,有人把chargepump也归为此类,而ldo只有降压型。
再次,也是很重要的一点,dc/dc因为其开关频率的原因导致其电源噪声很大,远比ldo大得多,大家可以关注psrr这个参数。 所以当考虑到,比较敏感的模拟电路时候,有可能就要牺牲效率为保证电源的纯净而选择ldo。
还有,通常ldo所需要的外围器件简单占面积小,而dc/dc一般都会要求电感,二极管,大电容,有的还会要mosfet。 特别是boost电路,需要考虑电感的最大工作电流,二极管的反向恢复时间,大电容的esr等等,所以从外围器件的选择来说比ldo复杂,而且占面积也相应的会大很多。


COB荧光粉沉淀工艺对产品光型的影响
爱芯元智成功入选芯片/半导体领域企业名单
被高估的智能家居平台:苹果HomeKit能带来什么惊喜?
国家电网已累计建成投运“十三交十一直”特高压工程
IPv6规模化落地 阿里巴巴领头先行
深刻理解DC-DC和LDO的原理和区别
最早一批新能源汽车的动力电池正在迎来淘汰期
工业互联网产业增加值巨大,应用创新助力企业“智”造升级
基于码云上release3.1分支代码进行分析
各国政府要求采用汽车安全传感器的法规,中国成重要力量
汽车MEMS市场安装率节节攀升 汽车安全性能要求越来越高
马克-扎克伯陷入无援尴尬之地 Facebook危机何解
自动驾驶的中国商业模式是怎样的
手机信号放大器如何安装,需要注意什么
中兴拿下25个5G商用合同!
超连接需要更广阔的视野
低功耗和高隔离度的数字光耦合器
嵌入式和物联网应用中蓝牙重要协议的应用
西门子触摸屏与200smart之间能否实现无线以太网口通讯
丰田汽车组建仅四人的新团队开发电动汽车