第一部分 设计概述
1.1 设计目的
本设计针对低照度高动态情况下,单帧图像曝光不足导致的图像噪声大、色彩失准等问题,在传统的 hdr 多帧融合(frames merging)方法上,采用层次化的图像配准(image alignment)方案、自适应白平衡(white balance)与色调映射(tone mapping)策略,在降低图像噪声、真实还原景物色彩的基础上,极大 抑制了多帧融合时常见的运动伪影(motion artifact)现象。本设计采用 fpga 进 行图像处理加速后,可以实现视频流的实时处理,视频流经过摄像头输入后,由 fpga 进行处理并以较低的时延经 hdmi 信号输出。
1.2 应用领域
本设计可用于手持摄像系统(摄像机、智能手机)图像、视频流的 hdr 处 理,可用于低照度情况下固定监控系统的视频流 hdr 处理,可用于线上直播系统的视频流 hdr 处理。
1.3 主要技术特点
采用层次化的图像配准方案,对输入的拜尔格式(bayer mosaic)原始图像 进行处理,生成四层高斯图像金字塔(gaussian pyramids)。较高层次的图像配准结果将作为低层次配准的预偏移。这一过程极大优化了算法效率,其结构化的特 点为并行处理提供了便利。
采用有权重的图像融合方案,对输入的多帧图像,经图像配准后计算相应图像对(image pairs)的 l1 残差,得到各融合帧(alternate frame)相对参考帧 (reference frame)的权重,有效地降低了配准失误造成的运动伪影。
采用自适应白平衡及色调映射策略,在低光照情况下最大程度还原了景物的 色彩;在保证较高信噪比的情况下,提高了主要景物的亮度。
利用 fpga 进行硬件加速,在 pynq-z2 的 python 开发环境中挂载封装有 ip 加速核的 overlay,极大提高了运行速度,能够实时处理。
1.4 关键性能指标
相机感光度(iso)、快门时间(shutter time)、融合帧数;
图像融合处理时间、视频流处理延时;
图像信噪比、色彩还原度、细节清晰度、纹理清晰度(人眼观察)。
1.5 主要创新点
(1) 低照度高动态图像处理;
(2) 层次化的图像配准;
(3) 有权重的图像融合降噪;
(4) 自适应白平衡与色调映射策略;
(5) fpga 硬件加速;
(6) 低时延视频流处理。
第二部分 系统组成及功能说明
2.1 整体介绍
pynq-z2 是基于 xilinx zynq-7000 fpga 的平台,除继承了传统 zynq 平 台的强大处理性能外,还兼容 arduino 接口与标准树莓派接口,这使得 pynqz2 的具有极大的可拓展性与开源性。pynq 是一个新的开源框架,使嵌入式编 程人员能够在无需设计可编程逻辑电路的情况下即可充分发挥 xilinx zynq all programmable soc(apsoc)的功能。与常规方式不同的是,通过 pynq-z2,用户可以使用 python 进行 apsoc 编程,并且代码可直接在 pynq-z2 上进行开发 和测试。通过 pynq-z2,可编程逻辑电路将作为硬件库导入并通过其 api 进行编程,其方式与导入和编程软件库基本相同。
xilinx zyng all programmable device 是一种基于双核 arm cortex - a9 处理 器(称为处理系统或 ps)的 soc,集成了 fpga fabric(称为可编程逻辑或 pl)。ps 子系统包括许多专用外设(内存控制器、usb、uart、iic、spi 等),并可以扩展额外的硬件 ip,其封装在 pl 的 overlay 中。overlay(或 hardware libraries, 硬件库)是可编程/可配置的 fpga 设计,能将用户设计的应用从 zynq 的处理系 统(ps 端)扩展到可编程逻辑(pl 端)。overlay 可用于加速软件程序,或为特定程序定制硬件平台。
本设计的硬件平台整体结构如上图所示。为了对低照度高动态下的多帧融合 图像处理系统进行硬件加速,我们利用 vivado hls 工具,自主设计了 downsample、alignment、merge、raw2rgb 等 ip cores,并通过 axi 总线与处理器核(ps 端)及存储器接口相连。在 pynq-z2 的设计流中,这些 ip 被封装成 overlay 并构造 python api 驱动,以供 pynq-z2 中的 python 开发环境(jupyternotebook)调用。
我们调用了 pynq-z2 自有的 hdmi overlay 进行处理流程及结果的显示。此外,pynq-z2 为我们提供了丰富的存储单元、外设模块与通信接口。这些存储单元被用来存储图像数据及各类处理中间结果,而各类外设模块及通信接口则 被用来进行系统调试与控制的过程监控。
图像处理系统的工作流程如上图所示。相机在低曝光的情况下拍摄多帧(比 如说,6 帧)图片,这些原始图片(raw images)由相机 ccd 或 cmos 图像传感器生成,其像素值以拜耳阵列的形式存储。我们首先将原始各输入帧进行一次系数 2 的均值下采样,两次系数 4 的高斯下采样,得到一个四层的高斯图像金字塔。基于这个高斯图像金字塔,我们进行层次化的图像配准。配准的结果将作为图像融合的参考,同时结合备选帧与参考帧的 l1 残差作为融合权重,进行图像 融合。融合后的图像进行去马赛克及伽马降噪,并进行自适应的白平衡及色调映 射等操作,将单通道的融合图像转为三通道(对应 rgb 色彩空间)输出图像, 最终输出与原始图像同分辨率的处理结果。
均值下采样与高斯下采样处理被封装在名为 downsample 的 ip core 中,层次化图像配准处理被封装在名为 alignment 的 ip core 中,图像融合处理被封装在名为 merge 的 ip core 中,去马赛克、白平衡、色调映射等处理被封装在名为 raw2rgb 的 ip core 中。这些 ip cores 挂载到 axi 总线上,经封装为 overlay 提供 python api 给 pynq-z2 的 jupyter-notebook。
2.2 各模块介绍
下采样模块(downsample)
下采样模块为后续的层次化图像配准处理提供四层高斯图像金字塔。四层高斯金字塔的最底层为全分辨率的拜耳原始图像(我们称该层为 layer_raw),其像素点以拜耳阵列的形式排布,如下图所示。
我们首先进行系数 2 的均值下采样,直观上将一个 2*2 像素的“方格”取均值下采样为一个像素。下采样后的结果类似于一个单通道的灰度图像,但实际上绿色通道对下采样后的结果影响较大。我们称该层为 layer_0。
layer_0 随后进行两次系数 4 的高斯下采样。卷积核函数见附录。该卷积核 函数的大小为 5*5 像素,以 4 像素为步长在被采样的图像上以后,对该图像进行下采样。高斯下采样的结果将在一定程度上保留了采样前图像的低频信息,而图 像细节则被丢失。直观上图像的大致轮廓被保留,图像尺寸更小,细节模糊不清。两次高斯下采样的结果分为称之为 layer_1 与 layer_2。
经下采样模块处理后的结果可以用下图说明。
图像配准模块(alignment)
图像配准以图像对(image pairs)的形式,在融合备选帧(alternate frame) 与参考帧(reference frame)之间展开。对参考帧中的每一个 16*16 像素的图块 (tile),寻找其在融合备选帧中使两者 l1 残差最小图块,两个图块位置上的偏 移即为配准结果。其 l1 残差的计算方式可用下式表达。
式中的求和对一个图块内的所有像素进行,配准的目的是对参考帧中的每一个图 块,寻找其在每一个备选帧中的对应图块,使得上式的结果最小。此时两个图块 的坐标偏移量即为配准结果。
在保证图像间偏差不大的前提下,图块配准的搜索范围可以限定图块原始位 置周围的若干像素内。为了进一步提高配准的效率,我们采用层次化的配准方案:在上层低分辨率图像中进行预配准,配准结果将作为下层图像配准的预偏移 (previous offset)。各层图像以图块为基本单位,在预偏移的基础上进行小范围的配准。由此,上述残差计算式可以重新表达如下。
中芯国际携手思必驰成立AI芯片合资公司
TDK面向DC-DC转换器的高绝缘强度的紧凑型
2011年智能手机硬件发展动态
Q2季度三星和英特尔在全球半导体差距缩小到4.96%
电磁波与人体健康
基于FPGA图像处理的视频流实时处理系统
大数据质量管理有什么策略
AI浪潮将至 科技促使智慧银行时代到来
BOSHIDA模块电源 带你了解开关电源模块作用及应用
全新升级的ALIENWARE m15 R7超硬核游戏设备
浅谈我国智能电网发展中存在的问题及对策
移动电源什么牌子好
三星申请AR眼镜专利,满满的科技感
移远通信成功入围此次联通雁飞5G模组招标
哪些行业需要用到印刷电路板PCB
5g系统总体架构及功能介绍
从华为投入研发基础开发工具看国产IDE的未来和商业模式
红米Note4x高配版或在3月发布:骁龙653+4GB内存+三段式机身
曝小米明年将推出三款折叠屏手机:外折、内折和翻盖
近场探头的工作原理与作用