制造业中的维护和可靠性专业人员面临许多挑战,但是任何维护组织的目标始终是相同的:最大化资产可用性。所谓资产,简而言之就是固定资产,即车间中将原材料变成成品的机器。
如今,不良的维护策略可能会使工厂的整体生产能力降低5%至20%。最近的研究还表明,计划外的停机时间每年给工业制造商造成的损失估计为500亿美元。这引出了一个问题:“一台机器使用多久之后需要下线维修?”传统上,这种困境迫使大多数维护组织陷人一种折中的局面,他们不得不在最大化零件的使用寿命或者通过尽早更换可能的零件来最大化正常运行的时间二者之间进行选择。基于时间的预防性维护已证明对大多数设备组件无效。
通常,通过运行工具或机器组件直到它们失效,可以最大程度地利用它们。但是随着零件开始振动,过热和破裂,这可能会导致灾难性的机器损坏。而且,尽管对于某些资产而言,运行失败可能是一种可接受的方法,但计划外停机几乎总是更昂贵且更耗时间进行纠正。相反,您可能会考虑更频繁地更换零件和维修设备。但这不仅会随着时间的流逝而增加更换成本,还会增加计划内的停机时间和运营中断。
备件管理提出了类似的挑战,感觉就像是持续不断的平衡行为。在预算有限的情况下,维护专业人员必须评估所需的零件以及何时购买它们。如果在需要时没有备件或订购备件,则在等待更换零件时,资产的停机时间可能为数天至数周甚至数月之久[1]。这通常会导致备件库存的积累,这不仅占用了营运资金,而且增加过多和过时的风险。
预测性维护(pdm)旨在通过授权公司最大程度地延长零件的使用寿命,同时避免计划外的停机时间并最大程度地减少计划内的停机时间来打破这些折衷。随着用于制造业的工业4.0的出现,公司能够利用新技术来实时监视和深入了解其运营,从而将典型的制造工厂转变为智能工厂。简而言之,智能工厂就是配备了能够使机器对机器(m2m)和机器对人(m2h)通信与分析和认知技术相结合的技术,从而使我们可以正确,及时地做出决策。
pdm(已经在我们耳边萦绕多年)利用多源数据,例如关键设备传感器,企业资源计划(erp)系统,计算机化维护管理系统(cmms)和生产数据。智能工厂管理系统将此数据与高级预测模型和分析工具结合在一起,以预测故障并主动解决。此外,随着时间的流逝,新的机器学习技术可以提高预测算法的准确性,从而带来更好的性能。
相比之下,传统的预防性维护(pm)程序通常需要非常耗时的手动数据处理和分析,才能从收集的数据中获得真正的洞察力。尽管许多人在这些策略上取得了一些成功,但它们通常严重依赖于经验进行估计,或者需要深度知识和对每台独立设备的不断分析,以保持准确性。
为了实现最大化机器可用性的维护目标,著名的德勤公司甚至确定了在工业4.0时代[2]运营的所有制造公司的两个主要业务目标:1)经营业务;2)增长业务。
一般增长业务聚焦于业务上线的增长,而经营业务则旨在消减成本。pdm技术可以从多个来源和旧系统中提取数据,以提供实时的高级见解,从而使计算机系统可以轻松地进行日常工作,从而使维护管理人员可以更有效地部署资源。
01 技术探索
根据设计或默认情况,跨行业的维护组织处于不同的成熟阶段。有些可能正在基于估计或oem建议进行定期维护检查,而其他一些可能会使用针对每种固定资产量身定制的基于统计的程序。但是,其他一些公司,尤其是航空航天和能源领域的公司,已经在对其资产进行连续监视技术,但是可能仅监视数据的输出,而不是利用先进的预测模型。
像其他任何事情一样,从预防性维护和以可靠性为中心的维护的一些基础开始,同时采取一两个合适的资产试行pdm,就存在着朝着可靠性优化的方向迈出的步骤。这些试点之一的主要资产应该是运营不可或缺的组成部分,并且必须以一定的规律性失败才能创建基线预测算法。
现在,pdm的想法听起来很诱人。但是它如何工作?组成智能工厂的许多技术不一定是新技术,而是变得更实惠,更健壮,更先进,并且已集成到业务中。与20年前相比,计算、存储和网络带宽现在都只花费几分之一,这使试点和扩展在财务上可行。
让我们探究组成智能工厂并使pdm成为可能的一些技术。
02 物联网
物联网(iot)可能是pdm难题中最大的部分。我们所知道的互联网已将您的笔记本电脑和移动设备连接到大型服务器场,这些服务器场中充满了用html编码的网站数据。物联网类似,但是数据是从资产到企业服务器的连续流。物联网使用温度,振动或电导率等传感器将机器的物理动作转换为数字信号。数据还可以从其他来源流式传输,例如机器的可编程逻辑控制器(plc),制造执行系统(mes)终端,cmms甚至是erp系统。物联网完成了“物理到数字再到物理(p-d-p)”这个循环的前半部分(如图1所示)。这种智能工厂概念是在德勤关于“数字供应网络的兴起”的讨论中引入的。一旦通过传感器将物理动作转换为数字信号,即可对其进行处理,汇总和分析。凭借价格合理的带宽和存储能力,可以传输大量数据,从而不仅可以全面了解单个工厂中的资产情况,还可以显示整个生产网络。
图一: p-d-p循环
03 分析与可视化
p-d-p循环的第二步是使用高级分析和预测算法分析和可视化数字信号。高级商业智能(bi)工具不再仅适用于数据科学家。许多分析平台已开始为非结构化数据,认知技术、机器学习和可视化集成高级解决方案。与生产过程有更多联系的运营分析师可以使用专门为日常用户创建的现代api(应用程序接口)轻松创建仪表板。
另一个趋势是数据移回边缘。与在使用点存储工具的精益技术类似,数据计算将在“边缘”进行,这意味着它在生成它的机器上进行处理。结果可以直接传达给机器操作员和维护技术人员。随着数据开始接近zb量级,边缘计算通过将一些处理工作分配给网络的外部节点来减轻核心网络流量并提高应用程序性能,从而减轻了计算机网络的总体负担。
04 闭环p-d-p循环
最后,在对信号进行处理,分析和可视化之后,是时候将这些结果转化为实际行动了。在某些情况下,得出的数字结论可能会指示机器人或机器更改其功能。在其他情况下,维护警报将促使技术人员采取行动。考虑一种情况,在这种情况下,预测算法将触发公司cmms系统中维护工作订单的创建,检査erp系统中是否有备用零件,并自动为任何所需的其他零件创建采购请求。然后,维护经理只需批准工作流中的项目并派遣适当的技术人员,这些操作都是自动化的,并且可以在计划外停机之前执行。
05 潜在优势
思考之初,挑战似乎难以克服。但是,数字化转型的好处远大于风险。这些好处包括:
1)节省物料成本(运营和mro物料支出中的5-10%);
2)降低存货成本;
3)设备正常运行时间和可用性增加(10-20%);
4)减少维护计划时间(20-50%);
5)降低了总体维护成本(5%至10%);
6)改进的hs&e合规性;
7)减少花费在暴力信息提取和验证上的时间;
8)花更多的时间在数据驱动的问题解决上;
9)与计划,绩效和责任制的明确联系;
10)对数据和信息更有信心,从而拥有决策权。
智能工厂和pdm是未来,并且选择是无止境的。
钛度Mini LED 2304分区旗舰曲面显示器震撼来袭
国产最强旗舰一加5曝光!一大波黑科技即将来袭
dB,dBi, dBd, dBc,dBm,dBw释义
安防不仅仅是保护人们的安全 同时也要确保个人信息的安全
如何应对高分辨率转换器器件的噪声挑战?
浅谈预测性维护在智能工厂的应用与优势
揭秘!智能网联汽车必备总线测试方案
现如今的人工神经网络能有多好的表现?
嵌入式系统芯片的软硬件协同仿真环境设计
具有超强真实感的,VR《赛罗奥特曼》电影,将上线小米vr一体机
重庆市人民大礼堂固定安装音响系统解构介绍
韶关无人机搭载气体检测仪解决方案说明
关于连接器、控制器和电缆三者的介绍
信号发生器E8251A unlevel报错维修案例
3D人脸识别研究探索
高通2012年创收191亿 搭苹果顺风车登顶
新能源汽车新福利:纯电SUV续航里程可达330公里
法国AXON CABLE推出超微D型定位连接器
跨界乱象:地产网络企业做芯片,跨界而来为何谋?
基于HT66F系列BLDC无线吸尘器