2019 isscc 大会于2月17—21日在美国旧金山开幕,facebook 首席 ai 科学家 yann lecun 在会上发表了主题演讲「深度学习硬件:过去、现在和未来」,详细介绍了深度学习研究的发展将如何影响未来硬件架构。
如今,只要在网络上搜索“深度学习”算法,都会显示很多相关的信息,在过去的数十年里,人工智能已经越来越成功地应用于生物识别、语音识别、视频识别、翻译等。国内更是诞生了诸如旷视科技、商汤科技、极链科技video++、依图科技等优秀人工智能初创企业。设计人员将大量高度并行的计算加载到硬件上,尤其是最初为快速图像渲染而开发的图形处理单元(gpu)。这些芯片特别适合于计算密集型“训练”阶段,该阶段使用许多经过验证的例子来调整系统参数。在“推理”阶段,其中部署深度学习处理的输入,需要更大的存储器访问和快速响应,目前已经可以使用gpu实现。
深度学习与gpu
为了快速应对增长的需求,许多公司都正在开发能够直接赋予深度学习能力的硬件,迫切的需要进行推理以及培训。近年来随着深度学习的迅速发展,卷积神经网络(convolutional neural network)被广泛使用,特别是在图像识别场景中的应用。为了满足更多场景应用,需要有一种能够根据实际场景需求替换不同cnn网络模型的系统框架。在过去的20年里,视频、游戏等产业推动了gpu的进步,其绘制图形所需的矩阵正是深度学习所需的计算类型。
gpu技术的进步则是推动了神经网络的发展,因为在没有gpu的情况下训练深度学习模型在大多数情况下会非常缓慢。许多人把生产中深度学习的想法想的过于复杂,我们可以在生产中使用cpu和选择的网络服务器进行深入学习。生产中进行训练是非常罕见的。即使你想每天更新你的模型权重,也不需要在生产中进行训练。这意味着你只是在生产过程中进行“推理”,比“培训”更快更容易。你可以使用任何你喜欢的web服务器,并将其设置为简单的api调用。如果能够有效地批量处理数据,gpu只会提供更快的速度。
gpu在处理图形的时候,从最初的设计就能够执行并行指令,从一个gpu核心收到一组多边形数据,到完成所有处理并输出图像可以做到完全独立。由于最初gpu就采用了大量的执行单元,这些执行单元可以轻松的加载并行处理,而不像cpu那样的单线程处理。另外,现代的gpu也可以在每个指令周期执行更多的单一指令。所以gpu比cpu更适合深度学习的大量矩阵、卷积运算的需求。深度学习的应用与其原先的应用需求颇为类似。gpu厂家顺理成章的在深度学习,找到了新增长点。
深度学习发展是否出现“瓶颈”
我们之所以使用gpu加速深度学习,是因为深度学习所要计算的数据量异常庞大,用传统的计算方式需要漫长的时间。但如果未来深度学习的数据量有所下降,或者说我们不能提供给深度学习所需要的足够数据量,是否就意味着深度学习也要进入“瓶颈”了呢?
做深度神经网络训练需要大量模型,然后才能实现数学上的收敛。深度学习要真正接近成人的智力,它所需要的神经网络规模非常庞大,它所需要的数据量,会比我们做语言识别、图像处理要多得多。假设说,我们发现我们没有办法提供这样的数据,则很有可能出现瓶颈。
目前,深度学习还在蓬勃发展往上的阶段。比如我们现阶段主要做得比较成熟的语音、图像、视频方面,整个的数据量还是在不断的增多的,网络规模也在不断的变复杂。可以说深度学习是gpu计算发展的关键,谁能找到最适合深度学习的模式,谁就是胜利者。
结语:
深度学习经过这么长时间的发展,在网络的种类、复杂程度和处理的信息量上都发生了天翻地覆的变化。当前,网络种类上,从早期的 alexnet 和 googlenet 到现在各企业推出的 gan以及各种深度强化学习的网络,它们各自网络结构都有不同,开发者在适应最新的网络上常常会遇到一些麻烦。处理的信息量也在成倍地增长,算力需求越来越高的情况下,也将对搭载处理单元的硬件有着更高的要求。
家用血压计该怎么选择
什么是硬度计
压力传感器的选择常识
实力让你感受一键“静音”,40dB深度降噪耳机新品南卡A2
华为这个功能好暖心,苹果三星都没有
深度学习的发展会带给硬件架构怎样的影响?
基站天线是5G新基建的关键环节之一
极限氧指数测试机标准,它的主要用途是什么
中国物联网市场持续扩大,智能制造前景广阔
高灯科技服务数字经济体 实现财税科技多极增长新局面
IBM新“芯片”:可以过滤血液,预测癌症,监测自己的健康状况
色码电感的检测_色码电感与电阻怎么区分
关于物联网的四大变革密令介绍和分析
关于现代WAN管理的分析和介绍
障碍物检测实验
眼球追踪技术成新宠 英特尔、三星全力开发抢先机
注资1157亿美元!历经多次自我改造三星能否战胜台积电?
电感式接近传感器在工业控制系统中有什么作用?
立式手术显微镜将带来更高效、便捷的医疗服务体验
深度学习将教授的白板草图转换为可用的模型