现代电子设备的普及为人们带来极大便利的同时,也加剧了电磁环境的恶化。电磁干扰(emi)是指由电磁波与电子器件之间相互作用而产生的干扰现象。
电子设备在工作时会产生电磁波,电磁波相互干扰会对敏感电路产生不好的影响,在严重的情况下会导致电路无法正常工作。这就是降低emi能够提高系统稳定性的重要原因。本文讨论了emi如何影响消费类电子和敏感设备性能,例如家用电器,警报系统和车库门开启器。
如何优化emi
在开关电源的设计中,电路设计和电路板布局是解决emi问题的两个关键点。在电路设计中,开关频率以及开关节点上的振铃(图1)会产生电磁干扰(emi)。
图一:典型开关电源应用电路
两种方式可有效优化emi:开关频率控制法和防振铃控制法
开关频率控制法
通过延长开关节点的开关上升时间和下降时间来降低dv / dt变化速率,从而减少了emi(见图2,图3,图4和图5)。
防振铃控制法 开关节点上的振铃会导致emi问题的出现。器件的振铃越多,emi性能就越差(图6)。在sw和gnd之间增加一个1k ω电阻(r)和另一个开关(s1)可减轻振铃。在轻载的情况下,当hs和ls开关均关断时,s1导通,使l1的部分电流通过r和s1释放到gnd(图7)。
图六:sw 处较多振铃(无防振铃控制)
图七:sw 处较少振铃(有防振铃控制)(测试条件:vin = 12v, vout = 3.3v, iout = 10ma) 图8和图9展示了通过开关速度控制和防振铃控制而实现的emi降低。
可改善emi的pcb布局 开关电源的反馈信号是对电磁干扰非常敏感的模拟信号,并且容易受到其自身的开关信号的干扰。良好的布局可以减少这种emi干扰,而不良的布局可能会产生较大的纹波,甚至会导致电源无法正常工作。 以下是通过元件放置和pcb布局实现更好的emi性能的一些技巧: ● 将输入滤波电容靠近ic放置(图10)。
图十:输入电容靠近ic放置,电磁场更小 ● 使用屏蔽电感 ● 使用小的sw pad布局(图11)
● ic gnd与系统gnd使用单点连接
● 保持输入地和gnd之间的连接尽可能短和宽
● 通过多个过孔或宽走线将vcc电容的接地连接到ic的接地
● 输入电容与in引脚之间的连线尽可能宽且短
● 确保所有的反馈都直接连接且连线短
● 反馈电阻和补偿器件都尽可能的靠近芯片
● 将sw信号远离敏感的模拟信号,例如fb信号 针对消费电子及射频敏感类应用的优化 在这个电子设备遍布的世界中,从家用电器到消费电子产品和对射频敏感的设备(例如车库门开启器和警报系统),emi现象都可能导致系统出现不必要的交互和操作问题。mp2317系列通过优化emi性能来解决此问题,同时mp2317系列拥有简单的封装且支持使用单层pcb板进行设计使制造更加简单和经济。 mp2317系列可以用作次级侧dc / dc变换器(图12)。
图十二:在空调中的应用
mp2317系列的主要特点:
● 7.5v 到26v大范围输入电压
● 150ua小静态电流
● 出色的负载线路调整率以及瞬态响应(图15)
● 效率最高可达96%,在12v转5v/20ma时,效率可达80%(图13)
● 全面的保护(过温保护otp,低压保护uvlo,过流保护ocp)以提高可靠性和使用寿命
图十三:mp2317效率图
图十四:mp2317(u1)单层板布局图(测试条件: vin = 12v, vout = 5v)
图十五:mp2317 快速负载瞬态响应(测试条件: vin = 12v, vout = 5v, l = 10μh) 结论: 除了对电路的可靠性有着至关重要的emi优化问题之外,电路的制造简便性也很重要。mps的1a / 2a / 2.5a 26v高效开关稳压器--mp2317,mp2344和 mp2345系列,采用了小型6引脚sot23封装和大引脚间距(0.95mm),这种封装方式能够使用单层pcb进行布局, 以此简化制造工艺以节省制造成本。这个系列三个不同电流值的开关稳压器使用同一种封装且互相pin-to-pin兼容,系统工程师无需更改pcb即可灵活切换到不同电流值的开关稳压器上,从而节省设计时间和成本。
emc寄语:随着时代的发展,越来越多的电子、电气设备或系统产品都需要进行检验检测,其中emc测试是必备的检验检测指标之一。但emc测试项目费用较贵,emc实验室造价昂贵,绝大部分测量设备又需要采用进口设备,导致很少检验检测机构有能力建造emc实验室。产品的emc性能是设计阶段赋予的,一般电子产品设计时如果不考虑emc因素,就会很容易导致emc测试失败,以致不能通过相关emc法规的测试或认证。例如,产品设计研发工程师们根据需求,设计出效果良好的滤波电路,置入产品i/o(输入/输出)接口的前级,可使因传导而进入系统的干扰噪声消除在电路系统的入口处;设计出隔离电路(如变压器隔离和光电隔离等)解决通过电源线、信号线和地线进入电路的传导干扰,同时阻止因公共阻抗、长线传输而引起的干扰;设计出能量吸收回路,从而减少电路、器件吸收的噪声能量;通过选择元器件和合理安排的电路系统,使干扰的影响减少。
emc技能:整改小技巧
1、150khz-1mhz,以差模为主,1mhz-5mhz,差模和共模共同起作用,5mhz 以后基本上是共模。差模干扰的分容性藕合和感性藕合。一般1mhz以上的干扰是共模,低频段是差摸干扰。用一个电阻串个电容后再并到y电容的引脚上,用示波器测电阻两引脚的电压可以估测共模干扰。
2、保险过后加差模电感或电阻。
3、小功率电源可采用pi型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
4、前端的π型emi零件中差模电感只负责低频emi,体积别选太大(dr8太大,能用电阻型式或dr6更好)否则幅射不好过,必要时可串磁珠,因为高频会直接飞到前端不会跟着线走。
5、传导冷机时在0.15mhz-1mhz超标,热机时就有7db余量。主要原因是初级bulk电容df值过大造成的,冷机时esr比较大,热机时esr比较小,开关电流在esr上形成开关电压,它会压在一个电流ln线间流动,这就是差模干扰。解决办法是用esr低的电解电容或者在两个电解电容之间加一个差模电感。
6、测试150khz总超标的解决方案:加大x电容看一下能不能下来,如果下来了说明是差模干扰。如果没有太大作用那么是共模干扰,或者把电源线在一个大磁环上绕几圈, 下来了说明是共模干扰。如果干扰曲线后面很好,就减小y电容,看一下布板是否有问题,或者就在前面加磁环。
7、可以加大pfc输入部分的单绕组电感的电感量。
8、pwm线路中的元件将主频调到60khz左右。
9、用一块铜皮紧贴在变压器磁芯上。
10、共模电感的两边感量不对称,有一边匝数少一匝也可引起传导150khz-3mhz超标。
11、一般传导的产生有两个主要的点:200khz和20mhz左右,这几个点也体现了电路的性能;200khz左右主要是漏感产生的尖刺;20mhz左右主要是电路开关的噪声。处理不好变压器会增加大量的辐射,加屏蔽都没用,辐射过不了。
12、将输入buck电容改为低内阻的电容。
13、对于无y-cap电源,绕制变压器时先绕初级,再绕辅助绕组并将辅助绕组密绕靠一边,后绕次级。
14、将共模电感上并联一个几k到几十k电阻。
15、将共模电感用铜箔屏蔽后接到大电容的地。
16、在pcb设计时应将共模电感和变压器隔开一点以免互相干扰。
17、保险套磁珠。
18、三线输入的将两根进线接地的y电容容量从2.2nf减小到471。
19、对于有两级滤波的可将后级0.22ufx电容去掉(有时前后x电容会引起震荡) 。
20、对于π型滤波电路有一个buck电容躺倒放在pcb上且靠近变压器此电容对传导150khz-2mhz的l通道有干扰,改良方法是将此电容用铜泊包起来屏蔽接到地,或者用一块小的pcb将此电容与变压器和pcb隔开。或者将此电容立起来, 也可以用一个小电容代替。
21、对于π型滤波电路有一个buck电容躺倒放在pcb上且靠近变压器此电容对传导150khz-2mhz的l通道有干扰,改良方法是将此电容用一个1uf/400v或者说0.1uf/400v电容代替, 将另外一个电容加大。 22、将共模电感前加一个小的几百uh差模电感。 23、将开关管和散热器用一段铜箔包绕起来,并且铜箔两端短接在一起,再用一根铜线连接到地。
24、将共模电感用一块铜皮包起来再连接到地。
25、将开关管用金属套起来连接到地。
26、加大x2电容只能解决150khz左右的频段,不能解决20mhz以上的频段,只有在电源输入加以一级镍锌铁氧体黑色磁环,电感量约50uh-1mh。
27、在输入端加大x电容。
28、加大输入端共模电感。
29、将辅助绕组供电二极管反接到地。
30、将辅助绕组供电滤波电容改用瘦长型电解电容或者加大容量。
31、加大输入端滤波电容。
32、150khz-300khz和20mhz-30mhz这两处传导都不过,可在共模电路前加一个差模电路。也可以看看接地是否有问题,该接地的地方一定要加强接牢,主板上的地线一定要理顺,不同的地线之间走线一定要顺畅不要互相交错的。
33、在整流桥上并电容,当考虑共模成分时,应该邻角并电容,当考虑差模成分时,应该对角并电容。
34、加大输入端差模电感。
2、产品电磁兼容骚扰源有:
1、设备开关电源的开关回路:骚扰源主频几十khz到百余khz,高次谐波可延伸到数十mhz。
2、设备直流电源的整流回路:工频线性电源工频整流噪声频率上限可延伸到数百khz;开关电源高频整流噪声频率上限可延伸到数十mhz。
3、电动设备直流电机的电刷噪声:噪声频率上限可延伸到数百mhz。
4、电动设备交流电机的运行噪声:高次谐波可延伸到数十mhz。
5、变频调速电路的骚扰发射:开关调速回路骚扰源频率从几十khz到几十mhz。
6、设备运行状态切换的开关噪声:由机械或电子开关动作产生的噪声频率上限可延伸到数百mhz。
7、智能控制设备的晶振及数字电路电磁骚扰:骚扰源主频几十khz到几十mhz,高次谐波可延伸到数百mhz。
8、微波设备的微波泄漏:骚扰源主频数ghz。
9、电磁感应加热设备的电磁骚扰发射:骚扰源主频几十khz,高次谐波可延伸到数十mhz。
10电视电声接收设备的高频调谐回路的本振及其谐波:骚扰源主频数十mhz到数百mhz,高次谐波可延伸到数ghz。
11、信息技术设备及各类自动控制设备的数字处理电路:骚扰源主频数十mhz到数百mhz(经内部倍频主频可达数ghz),高次谐波可延伸到十几ghz。
统信软件发布UOS系列操作系统,国内竞争能力提升
小米公布小米双12战绩,小米电视大受用户欢迎
京东商城Apple iPhone12系列将迎来首降
盐田双创赛决赛圆满落幕 双赛终极角逐,助力“产业兴盐”
MEMS压力传感器解析
电磁兼容EMI优化方案分享
直流高压发生器接线图
亚马逊销售数据显示,消费者已经不热衷VR设备了
配电线路带电作业前的准备、作业步骤及安全事项详读
与其他类型机器人比协作机器人优势
P5200A差分探头50MHz
接线端子与连接器的关系
TCL冰箱剑指食材养鲜的核心诉求 打造极速制冷机器
富达能否在加密货币的领域取得成功
TD-LTE:创新端到端测试技术
LED,LED是什么意思
区块链智能合约法律适用的难题及挑战
基于AT89S52单片机的超声波信号发射与接收电路设计
云原生与混合云 ai 边缘边缘计算进一步结合
工业连接器该如何进行选型