上硅所重大发现:室温下具有类金属延展性的无机半导体

导 读
最近,中国科学院上海硅酸盐研究所史迅研究员、陈立东研究员与德国马普所的yuri grin教授等合作,发现了一种室温具有和金属一样延展性的半导体材料。研究发现,α-ag2s是一种典型的半导体,但却具有非常反常的和金属类似的力学性能,特别是它拥有良好的延展性和可弯曲性,有望在柔性电子中获得广泛应用。
金属和陶瓷/半导体具有迥然不同的力学性能,如金属具有良好的延展性、塑性、易加工等,而陶瓷和半导体则表现为脆性、塑性差、不易加工等特性。人类的生存和发展离不开这些基础材料的研究,目前金属和陶瓷/半导体已走进了人们生产和生活的方方面面,但它们力学性能的差异导致了两者几乎孑然相反的应用领域。特别由于延展性的差别,金属和陶瓷/半导体的制备科学和加工技术完全不同,如金属一般采用熔炼结合机械加工、冲压、精密铸造成型等,而陶瓷/半导体则由于其脆性,一般采用粉末烧结等方法获得块体材料。在一些要求具有特殊形状或外形、以及变形能力的应用场合,目前唯有金属和有机材料适合使用,而陶瓷/半导体因其脆性无法满足此类需求。
近年来,柔性电子引起全世界的广泛关注并得到了迅速发展,并被认为有可能带来一场电子技术革命。它是将有机/无机材料电子器件制作在柔性衬底上的新兴电子技术,以其独特的可变形性以及高效、低成本制造工艺,在信息、能源、医疗、国防等领域具有广泛应用前景。然而,目前的无机材料尤其是半导体均为脆性材料,在大弯曲和大变形下、或者拉伸状况下极易发生断裂进而导致器件失效;此外,有机半导体相对无机半导体迁移率较低,且电学性能可调范围较小,无法满足半导体工业的蓬勃发展需求。因此,开发具有良好延展性和弯曲性的无机半导体材料,实现柔性电子技术的集成装备和制造工艺的突破,是柔性电子发展的迫切需求。
最近,中国科学院上海硅酸盐研究所史迅研究员、陈立东研究员与德国马普所的yuri grin教授等合作,发现了一种室温具有和金属一样延展性的半导体材料(图1左图)。研究发现,α-ag2s是一种典型的半导体,但却具有非常反常的和金属类似的力学性能,特别是它拥有良好的延展性和可弯曲性,有望在柔性电子中获得广泛应用。
图1. α-ag2s半导体材料的拉伸性能(左图)和晶体结构(右图)。
室温α-ag2s具有锯齿形(zig - zag)的褶皱层状单斜结构(图1右图)。4个s和4个ag原子构成一个8原子的圆环,圆环和圆环之间通过s原子连接。α-ag2s是一种典型的半导体,能带禁带宽度在1ev左右;未掺杂的α-ag2s主要是电子导电,其电子浓度较低,电导率比较小,在0.01sm-1左右,电子迁移率较大,在100 cm2v-1s-1左右。α-ag2s的电子浓度和电导率可通过元素掺杂提高几个量级,其电性能在半导体区间可自由调控。
相对于其他的半导体或者陶瓷,α-ag2s具有非常奇异和独特的力学性能。它具有和金属一样的延展性和变形能力,在外力和大应变下不发生材料的破坏和破碎(图2a),它的材料加工碎片也和金属类似为一片片细长的缠绕丝状物,而一般陶瓷和半导体的加工碎片则为细小颗粒或粉末。进一步表征它的力学性能发现(图2),α-ag2s的压缩变形最大可以达到50%以上,三点弯曲测试表明它的弯曲最大形变超过20%,拉伸测试则显示α-ag2s的拉伸形变可达4.2%。所有这些数值均远远超过已知的陶瓷和半导体材料,而和一些金属的力学性能相似。
图2. α-ag2s半导体材料的力学性能。
a图,α-ag2s的压缩实物照片;b图,压缩性能;c图,弯曲性能;d图,拉伸性能。
进一步研究了α-ag2s这些反常力学性能的机制和机理。对于一个具有良好滑移能力和延展性的材料,必需满足两个基本条件:一是存在能量势垒较小的滑移面,能够在外力的作用下发生滑动;二是在滑移过程中不发生分解,仍然维持材料的整体性完整性。我们采用第一性原理计算模拟了一系列材料包括α-ag2s、nacl、石墨、金刚石、金属mg和ti的滑移过程,发现α-ag2s、nacl、石墨、金属mg和ti均存在能量势垒较小的滑移面,其中α-ag2s的滑移面是(100)面;而金刚石在滑移过程中势垒太大,不存在滑移面。同时还发现α-ag2s、金属mg和ti的滑移面之间的相互作用力比较大,在材料滑移过程中很难产生裂纹和解离,维持了材料的整体性和完整性;而nacl、石墨和金刚石的滑移面之间的作用力太小,材料在滑移过程中很容易产生裂纹从而解离。还采用量子化学计算揭示了α-ag2s滑移面之间作用力的根源和作用方式,发现在一个晶体周期内,除了分子间作用力外,(100)滑移面之间(图1b)只存在2个黄色s原子和6个灰色ag原子之间的成键作用。在滑移过程中,2个s原子沿着6个ag原子构成的滑轨移动,此时不断有旧的ag-s键减弱甚至断裂,而又有新的ag-s键加强甚至生成。因此,(100)滑移面之间的作用力一直维持在ag-s的成键状态,其在滑移过程中能量波动较小,导致了小的滑移能量势垒;同时该成键状态保证了这些滑移面之间较强的作用力,避免了在滑移过程中裂纹的产生甚至材料的解离。
针对柔性电子的应用,该团队还制备了α-ag2s薄膜,发现它具有比块体材料更大的变形能力。同时还表征了α-ag2s形变后的电学性能,发现数十、上百次重复弯曲变形后,它的电性能基本维持不变或变化很小。
图3. α-ag2s半导体弯曲过程中的电阻变化。
不同于已知脆性的陶瓷和半导体材料,α-ag2s半导体具有类似金属的力学性能,在弯曲和变形下能维持材料的整体性和电学性能。它宽范围内可调的电性能、合适的带宽、大的迁移率使其有望广泛应用于柔性电子领域。同时,本工作也将开启寻找和发现其他具有类似金属力学性能的半导体材料的研究。
相关研究发表于《自然材料学》杂志(nature materials)
研究工作得到了国家自然科学基金(51625205 and 51632010)、中国科学院重点部署项目(kfzd-sw-421)、上海市基础重大项目(15jc1400301)和学科带头人(16xd1403900)等项目的资助和支持。
清华大学 · 冯雪教授点评
史迅研究员、陈立东研究员与马普所yuri grin教授等合作发现了室温下具有类金属延展性的无机半导体材料,他们从材料可延展机理、材料性能以及应用多层次全方位地对该新型无机可延展半导体材料进行研究和报道。
室温下可延展无机半导体材料不仅是材料科学的一项重大发现,对于柔性电子技术而言更可能是一项具有革命意义的发现。放眼当前柔性电子技术,它们主要基于两种技术路线。一种是基于有机材料(包括有机半导体、有机导体等),它的特点是材料本身具有一定的可延展性,但载流子迁移率较低,电学性能尚不足与传统电子材料相比。另一种是基于无机材料的技术策略,主要依靠精巧的力学原理设计实现无机功能部分与柔性可延展基底的集成,同时集成器件整体具有一定的柔性与可延展性。它的特点是器件性能继承了传统无机电子材料的高速与可靠性,但尚无标准、统一的结构设计方法和制备工艺。可延展的无机半导体材料兼具以上两种技术策略的优点:材料本身可延展、无机材料高性能,同时规避了相应的不足。因此,它的发现将为柔性电子技术提供第三种技术途径,且有望推进柔性电子技术更快走向成熟产业化和大规模应用。

一款基于STM32L475的开发板,最高主频为80MHz
RP Fiber Power在数值光束传播中创建多模光束
如何测试信号完整性,有哪些实现方法
芯片设计中ROM的概念、分类、设计流程
PLC在机场行李系统自动控制中的应用
上硅所重大发现:室温下具有类金属延展性的无机半导体
线程池的线程怎么释放
QUIC Version 1以一种新的互联网传输技术作为标准发布
西部数据致力于提供多元化的存储产品组合解决方案?
扼制英特尔和AMD的命运 10nm还能走多远
智能手表监测血糖,推动健康功能成为可穿戴设备研发趋势
橘子皮都能打开手机?是否打脸指纹安全解锁性能?
4个等级的晶振的特性和区别
C语言开发中可能会用到的GNU
夺得多项第一!问界M7冬测成绩大翻身?低温仍是纯电车的痛
云和数据促创新 中兴通讯GoldenDB亮相2020数据技术嘉年华
智能手机外观趋势:从华为P10、小米6、魅蓝E2衍生话题!
目前出现人工智能专业人才紧缺现状,人才培养体系出炉
Adam Taylor玩转MicroZed系列69:关于Zynq的约束简介
CPLD的串口通信设计