已经存在完整的ac / dc前端电源模块,可以简化dpa的前端设计,这些模块如表1所示。这些产品都提供了主动式pfc,负载范围内效率高,电源密度高以及还有过压、过流和过热保护。此外,部分型号还提供先进的功能,如热插拔功能,利于n +1冗余的有源负载共享,利于可扩展的并联,以及带有i2c、pmbus或以太网接口的板载微处理器,以实现根据负载等级或其他参数的实时监控和动态数字优化。
表1.最新引进ac/ dc电源模块,前端dpa应用
中间总线架构(iba)
iba可以说是一个多级的dpa,它在前端电源和pol转换器之间插入了另一级电源分配。过去的十多年演化中,它在dpa中主要是努力提高效率,同时降低成本和缩减大小。尽管传统电信dpa可能通过48v背板电压分发电源给每个机架/阵列中的板上隔离dc/ dc模块,以提供所有负载所需的电压,而在iba使用单个中间总线转换器替代了多个相互隔离的dc / dc模块,与非隔离式负载点转换器(nipol)一起提供多电压。在电气隔离之外,ibc还提供一个最佳的中间总线电压,比如从48 v配电母线中提供12 v的中间电压。
虽然iba架构比较流行,但并非适用所有应用,因此需要仔细评估电源系统以确定最佳的电源分配架构。因为采用三级转换,整体效率可能因此降低,并且采用ibc还是采用分离pol模组的成本和面积的权衡必需进行分析。此外,因为广泛采用同步整流,交流/直流前端也能输出与高电压效率相同的低电压,如3.3伏、5伏和12伏(见表1),从而降低了中间总线的需求。在较低的电流下分配较高的电压,比如48伏,也确实降低了对重铜轨/母线和特殊高电流连接器的需求,因此从这个方面来说,相对于取得相同功率的高电流低电压分配方式,节省了成本也降低了面积大小。
在选择ibc时,需要寻找一个隔离的降压型dc/ dc转换器,在标称分布总线输入的整个范围内提供额定输出电压。在德州仪器白皮书“使用中间总线架构提高系统效率”中,作者raismiftakhutdinov列出了以下需要考虑的要求和参数,其最重要的目标是低成本前提下的高效率和高功率密度:
效率: 96 to 97%(典型值)
功率密度: 》250 w/in3
成本: 每瓦特0.10到0.20美元
输入电压范围:
对于服务器和存储设备是43到53伏
对于企业系统是38到55伏
对于窄范围电信是36 到60伏
对于宽范围电信是36 到75伏
对于医疗和数据中心这样的高压系统是380到420伏
功率范围: 150到600瓦甚至更高
对于48v标定输入电压,大多数流行转换比率是4:1, 5:1, 以及6:1
机械外形和尺寸:
对于240瓦输出功率是1/4砖
小于240瓦输出功率时是1/8或小至1/16砖
开关频率:相对较低,大约100到200 khz
大多数流行的功率层级拓扑结构:全桥,半桥
辅助侧整流: 基本全部使用同步mosfet,自驱动或者控制驱动整流器
控制方法:完全调节、半调节或不受调节
ibc可归类为上述提到的三种不同类控制方法:完全调节、半调节或不受调节。
完全调节的ibc在一系列不同的电源线和负载条件下维持一个恒定的输出电压。因为它可以处理很宽范围的输入电压,如果配电母线的期望调节能力较差时,就可以采用这种ibc。对于标称48 v的输入,完全调节ibc可以指定36到75 伏的最小/最大输入范围。在所有三种控制类型中,它的缺点是最低效率(典型值为93%)、最低功率密度以及最高成本。
完全调节ibc目前的可选件很多,包括爱立信的bmr456和bmr457系列,这两个系列也被电子产品杂志授予2012年度最佳产品。智能产品利用固件和通过pmbus的控制来降低功耗,取决于不同应用类型,可以降低3〜10%的电路板功耗。1/4砖bmr456输出电压可以在13.0伏至8.2伏的工作范围内进行调整,1/8砖bmr457提供13.2 伏至8.2伏输出电压,可调低至6.9 伏。
半调节ibc支持与全面调节ibc等同的宽输入范围,但它的输出在整个输入电压范围内不受调节。虽然相较于完全调节ibc的效率有所提升(典型值为95%),但半调节ibc比不受调节的控制方式效率低点,成本也高点。
最后一类ibc提供了一个不受调节的输出电压,以固定的比例随输入电压而变化。例如4:1的固定比率ibc,在输入电压范围窄至36至60伏时,将产生一个9伏至15伏的输出,这种类型ibc的效率最高(97%典型),功率密度最高,并且成本也最低。
近期全行业范围内的采用半调节和不受调节ibc时造成的知识产权问题,极大地限制了这些类型ibc的购买和使用。德州仪器基于ucc28230高级pwm控制器的ucc28230evm是一款少有的仍然可以买到的相关产品。该评估模组展示了一个300瓦、效率96%的不受调节总线转换器设计,在43 v至53 v的输入电压范围内输出9.6伏的标称电压。
非隔离负载点 (nipol) dc/dc转换器
通过ac/dc前端来完成基本隔离,以及iba中的ibc来提供完全隔离,外形小且性价比高的nipol也可用于负载供电。当前的dsp、fpga和asic需要越来越低的pol电压以及大辐上升的电流,为适应这些趋势dc/ dc转换器需要更严格的调节和更低的噪声表现。幸运的是,电路板设计师拥有很多不错的选择,比如线性稳压器,开关稳压器,以及二者的结合。
如果可能的话,选择线性稳压器直接为信号调节和信号处理元件提供电源。所有电压调节器都将产生噪声,但线性调节器内在的特性保证它比dc-dc转换器的另外一个选择开关稳压器生成更少的噪声。线性稳压器也能提供良好的电源纹波抑制比(psrr)。任何开关模式电源的开关频率下,高psrr规范在送入线性稳压器的输入端时将有助于衰减该开关噪声,所以噪声不会被引入信号链中从而造成干扰的问题。这种技术被称为后调节。附加滤波可能需要在高频时抑制噪声,因为psrr随着频率增加会逐步回落直至降低为0分贝。
德州仪器tps7a4700是一个低噪声、1-a低压差线性稳压器,输入电压范围很宽,为3〜36 v,输出电压则为1.4 v至20.5 v,并且具备超低噪声(4.17μvrms)和高psrr值(1khz时80-db)。该器件是运算放大器、模数转换器(adc)、数模转换器(dac),以及其它高性能模拟电路的理想供电选择。
线性稳压器的缺点是,它们电源转换效率有限,因此会生成热量。可以使用公式pdiss=(vin – vout)*iload 来计算应用中的电源散热,并将所得瓦数与封装的热额定值进行比较。如果结果看来将出现散热问题,就需要选择更耐热的增强型封装,比如qfn,或考虑使用开关转换器来代替。一般来说,这种情况下,负载电流会持续比1a大不少。不过,也有1.5-a,2-a和3-a等常用额定线性稳压器。
随着输入和输出电压差的增大以及负载电流的增加,开关dc / dc转换器提供比线性稳压器更高的效率。在选择开关时需要考虑几个因素。首先,寻找低的输出电压纹波,一般来说应该低于30 mvpp。如果需要更平缓的电源,应该在开关后面加入线性稳压器以进行后调节。其次,选择一个较高的开关频率,以实现更小的封装和更好的瞬态响应,同时也避免了较低频带时的噪声,因为这些噪声可能是破坏性的。另一个期望的特性是考虑开关频率同步。同样的,在一个具备多转换器的系统中,不匹配的开关频率能产生一种叫做拍频现象的干扰。同步调节器的开关频率能防止拍频现象的形成。此外,它有助于让系统内生成的emi保持在一个可预测的频率组。
同时考虑一下,目前的设计正在采用fpga和dsp,这些设备正在推动技术走向极限,会造成一些意想不到的结局。一个给定的器件可能需要加电顺序,软启动或电源状况指示以正常运行。现代电源管理方案具备这些综合能力。表2列出了各种开关dc / dc降压转换器,以及nipol理想的特性。
表2: nipol的开关dc/dc转换器
如果电路板空间十分宝贵,考虑一下现代电源管理解决方案,将开关dc / dc转换器和后调节线性稳压器集成到一个单一的小型封装中。其中一个案例是ti的tps54120。该器件组合了高效率开关dc / dc转换器和低噪声、高psrr低压差线性稳压器,支持1-a、噪声敏感的应用。该tps54120还包括开关频率同步、软启动和电源状况指示灯,采用3.5毫米x5.5毫米的紧凑空间以及热增强型qfn封装。
总结
现代dpa的复杂性在增加,许多新的因素需要考虑,包括标准和法规,知识产权,以及不断演化的趋势。贸泽致力于帮助设计师提供dpa不同阶段所需的主要组成部分,以及许多被动和机械组件,从而绑定到一起形成完整方案。
美国高通技术公司宣布下一代高通骁龙805“超高清”处理器
微芯科技推出六款32位PIC32MX5/6/7单片机系列产品
折叠屏iPhone预计2022年和大家见面
TFT-LCD面板进行Gamma和闪烁校准的实验测试设计
边缘计算与云计算之间是怎样的关系?
现代分布式电源架构的关键技术解决方案
中国半导体再现最大收购案 闻泰科技正式收购安世集团所有GP和LP份额
臻于完美的OTL耳机放大器,OTL Headphone AMP
借助Excellence in Innovation Program了解工业AI应用
怎样使用IFTTT将有线门铃变成智能门铃
骁龙8Gen1怎么样,骁龙8Gen1评测来袭
浅谈单模光纤的多模光纤的区别
J2CN-SPK-30W外挂FLASH串口语音播放模块说明
雷柏M100/M200鼠标评测 值不值得买
Arduino使用教程 基于UNO PLUS的例程 Arduino OLED教程
液晶电视维修:LED灯光电路图原理分析
自动驾驶汽车的未来趋势_汽车语音识别系统市场分析
“新基建”与5G加持,工业互联网发展潜力巨大
EFR32MG21助力打造产品更优性能
电机保护器是如何保护泵类设备的详细说明