一文解析并查集(Union-Find)算法原理

记得我之前在讲 图论算法基础 时说图论相关的算法不会经常考,但最近被打脸了,因为一些读者和我反馈近期求职面试涉及很多图论相关的算法,可能是因为环境不好所以算法这块更卷了吧。
常见的图论算法我都已经写过了,这里按难度顺序列举一下:
图论算法基础
二分图判定算法及应用
环检测/拓扑排序算法及应用
并查集算法及应用(本文)
kruskal 最小生成树算法及应用
prim 最小生成树算法及应用
dijkstra 算法模板及应用
并查集(union-find)算法是一个专门针对「动态连通性」的算法,我之前写过两次,因为这个算法的考察频率高,而且它也是最小生成树算法的前置知识,所以我整合了本文,争取一篇文章把这个算法讲明白。
首先,从什么是图的动态连通性开始讲。
一、动态连通性
简单说,动态连通性其实可以抽象成给一幅图连线。比如下面这幅图,总共有 10 个节点,他们互不相连,分别用 0~9 标记:
现在我们的 union-find 算法主要需要实现这两个 api:
class uf {    /* 将 p 和 q 连接 */    public void union(int p, int q);    /* 判断 p 和 q 是否连通 */    public boolean connected(int p, int q);    /* 返回图中有多少个连通分量 */    public int count();}
这里所说的「连通」是一种等价关系,也就是说具有如下三个性质:
1、自反性:节点p和p是连通的。
2、对称性:如果节点p和q连通,那么q和p也连通。
3、传递性:如果节点p和q连通,q和r连通,那么p和r也连通。
比如说之前那幅图,0~9 任意两个不同的点都不连通,调用connected都会返回 false,连通分量为 10 个。
如果现在调用union(0, 1),那么 0 和 1 被连通,连通分量降为 9 个。
再调用union(1, 2),这时 0,1,2 都被连通,调用connected(0, 2)也会返回 true,连通分量变为 8 个。
判断这种「等价关系」非常实用,比如说编译器判断同一个变量的不同引用,比如社交网络中的朋友圈计算等等。
这样,你应该大概明白什么是动态连通性了,union-find 算法的关键就在于union和connected函数的效率。那么用什么模型来表示这幅图的连通状态呢?用什么数据结构来实现代码呢?
二、基本思路
注意我刚才把「模型」和具体的「数据结构」分开说,这么做是有原因的。因为我们使用森林(若干棵树)来表示图的动态连通性,用数组来具体实现这个森林。
怎么用森林来表示连通性呢?我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己。比如说刚才那幅 10 个节点的图,一开始的时候没有相互连通,就是这样:
class uf {    // 记录连通分量    private int count;    // 节点 x 的父节点是 parent[x]    private int[] parent;    /* 构造函数,n 为图的节点总数 */    public uf(int n) {        // 一开始互不连通        this.count = n;        // 父节点指针初始指向自己        parent = new int[n];        for (int i = 0; i < n; i++)            parent[i] = i;    }    /* 其他函数 */} 如果某两个节点被连通,则让其中的(任意)一个节点的根节点接到另一个节点的根节点上:
public void union(int p, int q) {    int rootp = find(p);    int rootq = find(q);    if (rootp == rootq)        return;    // 将两棵树合并为一棵    parent[rootp] = rootq;    // parent[rootq] = rootp 也一样    count--; // 两个分量合二为一}/* 返回某个节点 x 的根节点 */private int find(int x) {    // 根节点的 parent[x] == x    while (parent[x] != x)        x = parent[x];    return x;}/* 返回当前的连通分量个数 */public int count() {     return count;}
这样,如果节点p和q连通的话,它们一定拥有相同的根节点:
public boolean connected(int p, int q) {    int rootp = find(p);    int rootq = find(q);    return rootp == rootq;} 至此,union-find 算法就基本完成了。是不是很神奇?竟然可以这样使用数组来模拟出一个森林,如此巧妙的解决这个比较复杂的问题!
那么这个算法的复杂度是多少呢?我们发现,主要 apiconnected和union中的复杂度都是find函数造成的,所以说它们的复杂度和find一样。
find主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。我们可能习惯性地认为树的高度就是logn,但这并不一定。logn的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,树的高度最坏情况下可能变成 n。
所以说上面这种解法,find,union,connected的时间复杂度都是 o(n)。这个复杂度很不理想的,你想图论解决的都是诸如社交网络这样数据规模巨大的问题,对于union和connected的调用非常频繁,每次调用需要线性时间完全不可忍受。
问题的关键在于,如何想办法避免树的不平衡呢?只需要略施小计即可。
三、平衡性优化
我们要知道哪种情况下可能出现不平衡现象,关键在于union过程:
public void union(int p, int q) {    int rootp = find(p);    int rootq = find(q);    if (rootp == rootq)        return;    // 将两棵树合并为一棵    parent[rootp] = rootq;    // parent[rootq] = rootp 也可以    count--;
我们一开始就是简单粗暴的把p所在的树接到q所在的树的根节点下面,那么这里就可能出现「头重脚轻」的不平衡状况,比如下面这种局面:
长此以往,树可能生长得很不平衡。我们其实是希望,小一些的树接到大一些的树下面,这样就能避免头重脚轻,更平衡一些。解决方法是额外使用一个size数组,记录每棵树包含的节点数,我们不妨称为「重量」:
class uf {    private int count;    private int[] parent;    // 新增一个数组记录树的“重量”    private int[] size;    public uf(int n) {        this.count = n;        parent = new int[n];        // 最初每棵树只有一个节点        // 重量应该初始化 1        size = new int[n];        for (int i = 0; i  size[rootq]) {        parent[rootq] = rootp;        size[rootp] += size[rootq];    } else {        parent[rootp] = rootq;        size[rootq] += size[rootp];    }    count--;}
这样,通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在logn这个数量级,极大提升执行效率。
此时,find,union,connected的时间复杂度都下降为 o(logn),即便数据规模上亿,所需时间也非常少。
四、路径压缩
这步优化虽然代码很简单,但原理非常巧妙。
其实我们并不在乎每棵树的结构长什么样,只在乎根节点。
因为无论树长啥样,树上的每个节点的根节点都是相同的,所以能不能进一步压缩每棵树的高度,使树高始终保持为常数?
这样每个节点的父节点就是整棵树的根节点,find就能以 o(1) 的时间找到某一节点的根节点,相应的,connected和union复杂度都下降为 o(1)。
要做到这一点主要是修改find函数逻辑,非常简单,但你可能会看到两种不同的写法。
第一种是在find中加一行代码:
private int find(int x) {    while (parent[x] != x) {        // 这行代码进行路径压缩        parent[x] = parent[parent[x]];        x = parent[x];    }    return x;}
这个操作有点匪夷所思,看个 gif 就明白它的作用了(为清晰起见,这棵树比较极端):
用语言描述就是,每次 while 循环都会把一对儿父子节点改到同一层,这样每次调用find函数向树根遍历的同时,顺手就将树高缩短了。
路径压缩的第二种写法是这样:
// 第二种路径压缩的 find 方法public int find(int x) {    if (parent[x] != x) {        parent[x] = find(parent[x]);    }    return parent[x];}
我一度认为这种递归写法和第一种迭代写法做的事情一样,但实际上是我大意了,有读者指出这种写法进行路径压缩的效率是高于上一种解法的。
这个递归过程有点不好理解,你可以自己手画一下递归过程。我把这个函数做的事情翻译成迭代形式,方便你理解它进行路径压缩的原理:
// 这段迭代代码方便你理解递归代码所做的事情public int find(int x) {    // 先找到根节点    int root = x;    while (parent[root] != root) {        root = parent[root];    }    // 然后把 x 到根节点之间的所有节点直接接到根节点下面    int old_parent = parent[x];    while (x != root) {        parent[x] = root;        x = old_parent;        old_parent = parent[old_parent];    }    return root;}
这种路径压缩的效果如下:
比起第一种路径压缩,显然这种方法压缩得更彻底,直接把一整条树枝压平,一点意外都没有。就算一些极端情况下产生了一棵比较高的树,只要一次路径压缩就能大幅降低树高,从 摊还分析 的角度来看,所有操作的平均时间复杂度依然是 o(1),所以从效率的角度来说,推荐你使用这种路径压缩算法。
另外,如果使用路径压缩技巧,那么size数组的平衡优化就不是特别必要了。所以你一般看到的 union find 算法应该是如下实现:
class uf {    // 连通分量个数    private int count;    // 存储每个节点的父节点    private int[] parent;    // n 为图中节点的个数    public uf(int n) {        this.count = n;        parent = new int[n];        for (int i = 0; i < n; i++) {            parent[i] = i;        }    }    // 将节点 p 和节点 q 连通    public void union(int p, int q) {        int rootp = find(p);        int rootq = find(q);        if (rootp == rootq)            return;        parent[rootq] = rootp;        // 两个连通分量合并成一个连通分量        count--;    }    // 判断节点 p 和节点 q 是否连通    public boolean connected(int p, int q) {        int rootp = find(p);        int rootq = find(q);        return rootp == rootq;    }    public int find(int x) {        if (parent[x] != x) {            parent[x] = find(parent[x]);        }        return parent[x];    }    // 返回图中的连通分量个数    public int count() {        return count;    }}
union-find 算法的复杂度可以这样分析:构造函数初始化数据结构需要 o(n) 的时间和空间复杂度;连通两个节点union、判断两个节点的连通性connected、计算连通分量count所需的时间复杂度均为 o(1)。
到这里,相信你已经掌握了 union-find 算法的核心逻辑,总结一下我们优化算法的过程:
1、用parent数组记录每个节点的父节点,相当于指向父节点的指针,所以parent数组内实际存储着一个森林(若干棵多叉树)。
2、用size数组记录着每棵树的重量,目的是让union后树依然拥有平衡性,保证各个 api 时间复杂度为 o(logn),而不会退化成链表影响操作效率。
3、在find函数中进行路径压缩,保证任意树的高度保持在常数,使得各个 api 时间复杂度为 o(1)。使用了路径压缩之后,可以不使用size数组的平衡优化。
下面我们看一些具体的并查集题目。
题目实践
力扣第 323 题「无向图中连通分量的数目」就是最基本的连通分量题目:
给你输入一个包含n个节点的图,用一个整数n和一个数组edges表示,其中edges[i] = [ai, bi]表示图中节点ai和bi之间有一条边。请你计算这幅图的连通分量个数。
函数签名如下:
int countcomponents(int n, int[][] edges)
这道题我们可以直接套用uf类来解决:
public int countcomponents(int n, int[][] edges) {    uf uf = new uf(n);    // 将每个节点进行连通    for (int[] e : edges) {        uf.union(e[0], e[1]);    }    // 返回连通分量的个数    return uf.count();}class uf {    // 见上文}
另外,一些使用 dfs 深度优先算法解决的问题,也可以用 union-find 算法解决。
比如力扣第 130 题「被围绕的区域」:
给你一个 m×n 的二维矩阵,其中包含字符x和o,让你找到矩阵中四面被x围住的o,并且把它们替换成x。
void solve(char[][] board);
注意哦,必须是四面被围的o才能被换成x,也就是说边角上的o一定不会被围,进一步,与边角上的o相连的o也不会被x围四面,也不会被替换。
ps:这让我想起小时候玩的棋类游戏「黑白棋」,只要你用两个棋子把对方的棋子夹在中间,对方的子就被替换成你的子。可见,占据四角的棋子是无敌的,与其相连的边棋子也是无敌的(无法被夹掉)。
其实这个问题应该归为 岛屿系列问题 使用 dfs 算法解决:
先用 for 循环遍历棋盘的四边,用 dfs 算法把那些与边界相连的o换成一个特殊字符,比如#;然后再遍历整个棋盘,把剩下的o换成x,把#恢复成o。这样就能完成题目的要求,时间复杂度 o(mn)。
但这个问题也可以用 union-find 算法解决,虽然实现复杂一些,甚至效率也略低,但这是使用 union-find 算法的通用思想,值得一学。
你可以把那些不需要被替换的o看成一个拥有独门绝技的门派,它们有一个共同「祖师爷」叫dummy,这些o和dummy互相连通,而那些需要被替换的o与dummy不连通。
这就是 union-find 的核心思路,明白这个图,就很容易看懂代码了。
首先要解决的是,根据我们的实现,union-find 底层用的是一维数组,构造函数需要传入这个数组的大小,而题目给的是一个二维棋盘。
这个很简单,二维坐标(x,y)可以转换成x * n + y这个数(m是棋盘的行数,n是棋盘的列数),敲黑板,这是将二维坐标映射到一维的常用技巧。
其次,我们之前描述的「祖师爷」是虚构的,需要给他老人家留个位置。索引[0.. m*n-1]都是棋盘内坐标的一维映射,那就让这个虚拟的dummy节点占据索引m * n好了。
看解法代码:
void solve(char[][] board) {    if (board.length == 0) return;    int m = board.length;    int n = board[0].length;    // 给 dummy 留一个额外位置    uf uf = new uf(m * n + 1);    int dummy = m * n;    // 将首列和末列的 o 与 dummy 连通    for (int i = 0; i < m; i++) {        if (board[i][0] == 'o')            uf.union(i * n, dummy);        if (board[i][n - 1] == 'o')            uf.union(i * n + n - 1, dummy);    }    // 将首行和末行的 o 与 dummy 连通    for (int j = 0; j < n; j++) {        if (board[0][j] == 'o')            uf.union(j, dummy);        if (board[m - 1][j] == 'o')            uf.union(n * (m - 1) + j, dummy);    }    // 方向数组 d 是上下左右搜索的常用手法    int[][] d = new int[][]{{1,0}, {0,1}, {0,-1}, {-1,0}};    for (int i = 1; i < m - 1; i++)         for (int j = 1; j < n - 1; j++)             if (board[i][j] == 'o')                // 将此 o 与上下左右的 o 连通                for (int k = 0; k < 4; k++) {                    int x = i + d[k][0];                    int y = j + d[k][1];                    if (board[x][y] == 'o')                        uf.union(x * n + y, i * n + j);                }    // 所有不和 dummy 连通的 o,都要被替换    for (int i = 1; i < m - 1; i++)         for (int j = 1; j < n - 1; j++)             if (!uf.connected(dummy, i * n + j))                board[i][j] = 'x';}class uf {    // 见上文}
这段代码很长,其实就是刚才的思路实现,只有和边界o相连的o才具有和dummy的连通性,他们不会被替换。
其实用 union-find 算法解决这个简单的问题有点杀鸡用牛刀,它可以解决更复杂,更具有技巧性的问题,主要思路是适时增加虚拟节点,想办法让元素「分门别类」,建立动态连通关系。
力扣第 990 题「等式方程的可满足性」用 union-find 算法就显得十分优美了,题目是这样:
给你一个数组equations,装着若干字符串表示的算式。每个算式equations[i]长度都是 4,而且只有这两种情况:a==b或者a!=b,其中a,b可以是任意小写字母。你写一个算法,如果equations中所有算式都不会互相冲突,返回 true,否则返回 false。
比如说,输入[a==b,b!=c,c==a],算法返回 false,因为这三个算式不可能同时正确。
再比如,输入[c==c,b==d,x!=z],算法返回 true,因为这三个算式并不会造成逻辑冲突。
我们前文说过,动态连通性其实就是一种等价关系,具有「自反性」「传递性」和「对称性」,其实==关系也是一种等价关系,具有这些性质。所以这个问题用 union-find 算法就很自然。
核心思想是,将equations中的算式根据==和!=分成两部分,先处理==算式,使得他们通过相等关系各自勾结成门派(连通分量);然后处理!=算式,检查不等关系是否破坏了相等关系的连通性。
boolean equationspossible(string[] equations) {    // 26 个英文字母    uf uf = new uf(26);    // 先让相等的字母形成连通分量    for (string eq : equations) {        if (eq.charat(1) == '=') {            char x = eq.charat(0);            char y = eq.charat(3);            uf.union(x - 'a', y - 'a');        }    }    // 检查不等关系是否打破相等关系的连通性    for (string eq : equations) {        if (eq.charat(1) == '!') {            char x = eq.charat(0);            char y = eq.charat(3);            // 如果相等关系成立,就是逻辑冲突            if (uf.connected(x - 'a', y - 'a'))                return false;        }    }    return true;}class uf {    // 见上文}
至此,这道判断算式合法性的问题就解决了,借助 union-find 算法,是不是很简单呢?
最后,union-find 算法也会在一些其他经典图论算法中用到,比如判断「图」和「树」,以及最小生成树的计算,详情见 kruskal 最小生成树算法。


抢先了解!国家发布“绿色工厂”新标准
工信部:网络提速降费工作专项部署,对携号转网制定了具体目标
射频集成电路的设计难点分析
指纹识别与刷脸识别谁更安全?
区块链的去中心化特性介绍
一文解析并查集(Union-Find)算法原理
[图文]简单小电台实验
巨大的能耗和散热对数据中心的发展提出了不小的挑战
华为新专利可监测用电设备、芯片表面温度,改善用户体验
什么是工业之美?全球产业链重塑下的智造升级
库存与价格调整完毕,锂电产业渐入佳境
Verilog如何编程?Verilog编程知识点总结
5G的到来将加速新能源汽车的发展
博通蓝牙技术助LG打造新款数字电视
GNSS模块在不同的领域运用范围
Cadence全新SpeedBridge Adapter实现对PCIe 3.0设计的确认和验证
上海市集成电路行业协会五届四次会员大会:审议并通过了四项工作报告
JL-245CN NEMA接口旋锁式智联光控器解读
OIHVP250无源高压探头的特点及应用范围
LED灯条X-ray检测如何降低产品返修率?