相较目前主流的硅晶圆(si),第三代半导体材料sic与gan(氮化镓)具备耐高电压特色,并有耐高温与适合在高频环境下优势,其可使芯片面积大幅减少,并简化周边电路设计,达成减少模块、系统周边零组件及冷却系统体积目标,gan应用范围包括射频、半导体照明、激光器等领域。
现行gan功率元件以gan-on-sic及gan-on-si两种晶圆进行制造,其中gan-on-sic强调适合应用在高温、高频的操作环境,因此在散热性能上具优势,其以5g基地台应用最多,预期sic基板未来在5g商用带动下,具有庞大市场商机。
5g高频特性,使gan技术有伸展空间
目前基地台用功率放大器(power amplifier,pa)主要为基于硅的横向扩散金属氧化物半导体(laterally diffused metal oxide semiconductor,ldmos)技术,不过ldmos技术仅适用于低频段,在高频应用领域存在局限性。
由于ldmos功率放大器的频宽会随着频率增加而大幅减少,运用于3.5ghz频段的ldmos制程已接近限制,性能开始出现下滑,在考虑5g商用频段朝更高频段发展下,过去ldmos将逐渐难以符合性能要求,因此第三代半导体材料gan技术崛起;由于gan技术支援更高资料容量之多资料传输,同时搭配5g高速网络,不论在频宽、性能、容量、成本间可做出最佳成效。
换言之,gan优势在于更高功率密度及更高截止频率(cutoff frequency,输出讯号功率超出或低于传导频率时输出讯号功率的频率),尤其在5g多输入多输出(massive mimo)应用中,可实现高整合性解决方案,例如模块化射频前端元件,以毫米波(millimeter wave,mmwave)应用为例,gan高功率密度特性可有效减少收发通道数及尺寸,实现高性能目标,然短期ldmos会与gan共存,主要原因在于低频应用仍会采用ldmos,例如2ghz以下应用领域。
5g基地台的功率放大器将以砷化镓与gan制程为主
从qorvo产品应用来看,采用gan技术将天线阵列功耗降低40%,透过整合式多通道模块、3~6ghz及28/39ghz频段在射频前端产品的布局,更加强调高性能、低功耗、高整合度、高易用性等目标达成。
其中gan可达ldmos原始功率密度4倍,每单位面积功率提高4~6倍,即在相同发射功率规格下,gan裸片尺寸为ldmos裸片尺寸的1/6~1/4。由于gan具有更高功率密度特性,能实现更小元件封装,满足massive mimo和主动天线单元(active antenna unit,aau)技术下射频前端高度整合需求。
目前gan运用以5g基础设施(如基地台)为主,手机较难采用gan技术,主要挑战包括:(1)gan成本高;(2)gan供电电压高;较不符合手机需求,不过若未来透过改进gan射频元件特性,仍有可能应用于手机,例如加入新的绝缘介质与沟道材料,使其适应低电压工作环境。无论如何,gan已成为高频、大功耗应用技术首选,包括需高功率水平的传输讯号或长距离应用,例如基地台收发器、雷达、卫星通信等。
如何配置单台服务器
华为Q2国内出货量逆势大增31%!
米家飞利浦台灯3正式开售:360°全自由度灯臂、实现小爱同学语音控制
半导体是世界上最成功的公司之一,前十半导体公司有那些?
LTC3803转换器为电信管理电路提供几瓦的输出功率
5G高频特性将使GaN技术使用领域延伸
晶瑞股份拟在湖北省潜江市投资建设微电子材料项目 项目总投资15.2亿元
亚马逊云科技直挂云帆济沧海,助力中国企业致胜海外
人工智能可以像人一样描述图像?
2030年太阳能将成为能源系统的支柱
华为MediaPadT5印度上市 最低售价约合人民币1500元
物联网卡有哪些神奇的功能?
数字式毫秒表作为电力系统继电保护装置,它有哪些功能
联络中心软件供应商先进的自助服务选项正变得越来越有吸引力
电子芯闻早报:三星重金止血引入顶级光刻机
2019年上半年中国智能手机出货量同比下滑5.4%,5G和终端流速成未来关注重点
物联网和AI发展迅速,嵌入式的发展前景如何
网络攻击我们可以预防吗
全球智能手机利润分布:苹果继续老大,华米OV占20%
拍字节新型3D铁电存储器(VFRAM)-P95S128KSWSP3TF在新型语音电子门锁系统中的应用