微机电系统(microelectromechanical systems,缩写为 mems)是将微电子技术与机械工程融合到一起的一种工业技术,它的操作范围在微米范围内。微机电系统在日本被称作微机械(micromachines),在欧洲被称作微系统技术(micro systems technology,mst)。
微机电设备的尺寸通常在20微米到一毫米之间,它们内部通常包含一个微处理器和若干获取外界信息的微型传感器。微机电系统的加工技术由半导体加工技术改造而来,使其可以应用到实际当中,而后者一般用来制造电子设备。微机电系统有多种原材料和制造技术,根据应用、市场等性能需求的不同进行选择。
一、mems的材料
1、硅
硅是用来制造集成电路的主要原材料。由于在电子工业中已经有许多实用硅制造极小的结构的经验,硅也是微机电系统非常常用的原材料。硅的物质特性也有一定的优点。单晶体的硅遵守胡克定律,几乎没有弹性滞后的现象,因此几乎不耗能,其运动特性非常可靠。此外硅不易折断,因此非常可靠,其使用周期可以达到上兆次。
一般微机电系统的生产方式是在基质上堆积物质层,然后使用平板印刷和蚀刻的方法来让它形成各种需要的结构。
2、高分子材料
虽然电子工业对硅加工的经验是非常丰富和宝贵的,并提供了很大的经济性,但是纯的硅依然是非常昂贵的。高分子材料非常便宜,而且其性能各种各样。使用注射成形、压花、立体光固化成形等技术也可以使用高分子材料制造微机电系统,这样的系统尤其有利于微液体应用,比如可携测血设备等。
3、金属
金属也可以用来制造微机电系统。虽然比起硅来金属缺乏其良好的机械特性,但是在金属的适用范围内它非常可靠。
二、mems加工技术
①、传统机械加工方法
传统机械加工方法指利用大机器制造小机器 ,再利用小机器制造微机器 。可以用于加工一些在特殊场合应用的微机械装置 ,例如微型机械手、 微型工作台等。
传统机械加工方法以日本为代表 ,日本研究 mems的重点是超精密机械加工 ,因此他们更多的是将传统机械加工进行微型化 。
此加工方法可以分为两大类:超精密机械加工及特种微细加工。超精密机械加工以金属为加工对象,用硬度高于加工对象的工具,将对象材料进行切削加工,所得的三维结构尺寸可在0.01mm以下。此技术包括钻石刀具微切削加工、微钻孔加工、微铣削加工及微磨削与研磨加工等。
特种微细加工技术是通过加工能量的直接作用,实现小至逐个分子或原子的切削加工。特种加工是利用电能、热能、光能、声能及化学能等能量形式。常用的加工方法有:电火花加工、超声波加工、电子束加工、激光加工、离子束加工和电解加工等。超精密机械加工和特种微细加工技术的加工精度已达微米、亚微米级,可以批量制作模数仅为0.02左右的齿轮等微机械元件,以及其它加工方法无法制造的复杂微结构器件。
②、硅基mems技术
以美国为代表的硅基mems技术是利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基mems器件。这种方法可与传统的ic工艺兼容,并适合廉价批量生产,已成为目前的硅基mems技术主流。
当前硅基微加工技术可分为体微加工技术、表面微加工技术。
体微加工技术:
体微加工技术是对硅的衬底进行加工的技术。一般 采用各向异性化学腐蚀 ,利用单晶硅的不同晶向的腐蚀速率存在各向异性的特点而进行腐蚀,来制作不同的微机械结 构或微机械零件,其主要特点是硅的腐蚀速率和硅的晶向、搀杂浓度及外加电位有关。
另一种常用技术为电化学腐蚀 , 现已发展为电化学自停止腐蚀 ,它主要用于硅的腐 蚀以制备薄面均匀的硅膜。利用此技术可以制造出mems的精密三维结构。
体微加工技术主要通过 对硅的深腐蚀和硅片的整体键合来实现 ,能够将几 何尺寸控制在微米级。由于各向异性化学腐蚀可以 对大硅片进行 ,使得 mems 器件可以高精度地批量 生产 ,同时又消除了研磨加工所带来的残余机械应 力 ,提高了 mems 器件的稳定性和成品率。
表面微加工技术:
表面微加工技术是在硅片正面上形成薄膜并按一定 要求对薄膜进行加工形成微结构的技术 ,全部加工仅涉及到硅片正面的薄膜。是在20世纪80年代由美国加州大学berkeley分校开发出来的,它以多晶硅为结构层,二氧化硅为牺牲层。表面微加工技术与集成电路技术最为相似,其主要特点是在“薄膜+淀积”的基础上,利用光刻、腐蚀等ic常用工艺制备微机械结构,最终利用选择腐蚀技术释放结构单元,获得可动的二维或三维结构。
用这种技术可以淀积二 氧化硅膜、氮化硅膜和多晶硅膜 ;用蒸发镀膜和溅射 镀膜可以制备铝、钨、钛、镍等金属膜 ;薄膜的加工一 般采用光刻技术 ,如紫外线光刻、x 射线光刻、电子 束光刻和离子束光刻。通过光刻将设计好的微机械 结构图转移到硅片上 ,再用等离子体腐蚀、反应离子 腐蚀等工艺来腐蚀多晶硅膜、氧化硅膜以及各种金 属膜 ,以形成微机械结构。
这一技术避免了体微加工所要求的双面对准、背面腐蚀等问题 ,与集成电路 的工艺兼容,且工艺成熟,可以在单个直径为几十毫米的单晶硅基片上批量生成数百个mems装置。
③、深层刻蚀技术
深层刻蚀技术指深层反应离子向硅芯片内部刻蚀,刻蚀到芯片内部的一个牺牲层,并在刻蚀完成后被腐蚀掉,这样本来埋在芯片内部的结构就可以自由运动。
深层刻蚀技术属于微机械加工方法 liga 的一种 ,liga 方 法是指采用同步 x 射线深层光刻、微电铸制模和注 塑复制等主要工艺步骤组成的一种综合性微机械加 工技术。
利用liga技术可以加工各种金属、塑料和陶瓷等材料,得到大深宽比的精细结构,其加工深度可达几百微米。
liga技术与其它立体微加工技术相比有以下特点:
可制作高度达数百至1000μm,深宽比可大于200,侧壁平行偏离在亚微米范围内的三维立体微结构;
对微结构的横向形状没有限制,横向尺寸可以小到0.5μm,精度可达0.1μm;
用材广泛,金属、合金、陶瓷、玻璃和聚合物都可以作为liga的加工对象;
与微电铸、铸塑巧妙结合可实现大批量复制生产,成本低。
liga的主要工艺步骤如下:在经过x光掩模制版和x光深度光刻后,进行微电铸,制造出微复制模具,并用它来进行微复制工艺和二次微电铸,再利用微铸塑技术进行微器件的大批量生产。
由于liga所要求的同步x射线源比较昂贵,所以在liga的基础上产生了准liga技术,它是用紫外光源代替同步x射线源,虽然不能达到liga加工的工艺性能,但也能满足微细加工中的许多要求。而由上海交通大学和北京大学联合开发、具有独立知识产权的dem技术,也是liga技术中的一种。该技术采用感应耦合等离子体深层刻蚀工艺来代替同步辐射x光深层光刻,然后进行常规的微电铸和微复制工艺,该技术因不需要昂贵的同步辐射x光源和特制的x光掩摸板而具有广泛的应用前景。
哪些算法对现代文明所做贡献最大?
三菱PLC在污水处理系统中如何实现数据采集远程监控?
读懂PetaLinux:让嵌入式Linux在它上面“跑”起来
Arm宣布在华成立5G解决方案实验室
通过加速寿命试验来模拟产品在极端压力水平下的性能
微机电系统的三种材料和加工技术
军用连接器应用及市场的未来发展趋势
教你linux搭建web服务器
硅整流交流发电机的工作特性
吉利终于出招了!全新MPV不输GL8,10万让奥德赛元气大亏
ARM成为平板取代PC的强势对手
为什么要学STM32?答案就在这里
佰才邦Baicells完成由高通领投的亿元B+轮融资
Qlib的安装和运行内置算法策略
台积电7nm芯片已成5G产品的主要支撑力量
寄存器与锁存器与触发器
vivo计划在2020年推出至少5款5G机型
基于PC及和PIC16F877芯片实现情感表情机器人的研究与设计
SV-8003VP对讲广播SIP协议网络SIP话筒主机
OPPOMIX最新消息:OPPO全面屏来袭告别低配高价,骁龙835加持价格感人