二叉树的迭代遍历
看完本篇大家可以使用迭代法,再重新解决如下三道leetcode上的题目:
144.二叉树的前序遍历
94.二叉树的中序遍历
145.二叉树的后序遍历
为什么可以用迭代法(非递归的方式)来实现二叉树的前后中序遍历呢?
我们在栈与队列:匹配问题都是栈的强项中提到了,递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。
此时大家应该知道我们用栈也可以是实现二叉树的前后中序遍历了。
前序遍历(迭代法)
我们先看一下前序遍历。
前序遍历是中左右,每次先处理的是中间节点,那么先将跟节点放入栈中,然后将右孩子加入栈,再加入左孩子。
为什么要先加入 右孩子,再加入左孩子呢?因为这样出栈的时候才是中左右的顺序。
动画如下:
不难写出如下代码: (注意代码中空节点不入栈)
class solution {public: vector preordertraversal(treenode* root) { stack st; vector result; if (root == null) return result; st.push(root); while (!st.empty()) { treenode* node = st.top(); // 中 st.pop(); result.push_back(node->val); if (node->right) st.push(node->right); // 右(空节点不入栈) if (node->left) st.push(node->left); // 左(空节点不入栈) } return result; }}; 此时会发现貌似使用迭代法写出前序遍历并不难,确实不难。
此时是不是想改一点前序遍历代码顺序就把中序遍历搞出来了?
其实还真不行!
但接下来,再用迭代法写中序遍历的时候,会发现套路又不一样了,目前的前序遍历的逻辑无法直接应用到中序遍历上。
中序遍历(迭代法)
为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:
处理:将元素放进result数组中
访问:遍历节点
分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。
那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。
那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
动画如下:
中序遍历,可以写出如下代码:
class solution {public: vector inordertraversal(treenode* root) { vector result; stack st; treenode* cur = root; while (cur != null || !st.empty()) { if (cur != null) { // 指针来访问节点,访问到最底层 st.push(cur); // 将访问的节点放进栈 cur = cur->left; // 左 } else { cur = st.top(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据) st.pop(); result.push_back(cur->val); // 中 cur = cur->right; // 右 } } return result; }}; 后序遍历(迭代法)
再来看后序遍历,先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:
所以后序遍历只需要前序遍历的代码稍作修改就可以了,代码如下:
class solution {public: vector postordertraversal(treenode* root) { stack st; vector result; if (root == null) return result; st.push(root); while (!st.empty()) { treenode* node = st.top(); st.pop(); result.push_back(node->val); if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈) if (node->right) st.push(node->right); // 空节点不入栈 } reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了 return result; }}; 总结
此时我们用迭代法写出了二叉树的前后中序遍历,大家可以看出前序和中序是完全两种代码风格,并不想递归写法那样代码稍做调整,就可以实现前后中序。
这是因为前序遍历中访问节点(遍历节点)和处理节点(将元素放进result数组中)可以同步处理,但是中序就无法做到同步!
上面这句话,可能一些同学不太理解,建议自己亲手用迭代法,先写出来前序,再试试能不能写出中序,就能理解了。
那么问题又来了,难道 二叉树前后中序遍历的迭代法实现,就不能风格统一么(即前序遍历 改变代码顺序就可以实现中序 和 后序)?
当然可以,这种写法,还不是很好理解,我们将在下一篇文章里重点讲解,敬请期待!
其他语言版本
java:
// 前序遍历顺序:中-左-右,入栈顺序:中-右-左class solution { public list preordertraversal(treenode root) { list result = new arraylist(); if (root == null){ return result; } stack stack = new stack(); stack.push(root); while (!stack.isempty()){ treenode node = stack.pop(); result.add(node.val); if (node.right != null){ stack.push(node.right); } if (node.left != null){ stack.push(node.left); } } return result; }}// 中序遍历顺序: 左-中-右 入栈顺序: 左-右class solution { public list inordertraversal(treenode root) { list result = new arraylist(); if (root == null){ return result; } stack stack = new stack(); treenode cur = root; while (cur != null || !stack.isempty()){ if (cur != null){ stack.push(cur); cur = cur.left; }else{ cur = stack.pop(); result.add(cur.val); cur = cur.right; } } return result; }}// 后序遍历顺序 左-右-中 入栈顺序:中-左-右 出栈顺序:中-右-左, 最后翻转结果class solution { public list postordertraversal(treenode root) { list result = new arraylist(); if (root == null){ return result; } stack stack = new stack(); stack.push(root); while (!stack.isempty()){ treenode node = stack.pop(); result.add(node.val); if (node.left != null){ stack.push(node.left); } if (node.right != null){ stack.push(node.right); } } collections.reverse(result); return result; }} python:
为何老人与年轻人都更愿意选择OPPO?这些用户需求值得关注
智能家居安防系统在在生活中不同地方起到哪些作用
西部数据WD Blue SN550到底值不值得买
“东数西算”工程是什么 “东数西算”工程再发力
摩拜创始人胡玮炜:摩拜正处在逆境当中 靠一个技术赢不了竞争,但技术信仰可以
用迭代法编写二叉树的前后中序遍历案例
5V单电源8通道数据采集系统电路设计
AI的力量会自己崛起吗
射频电路是如何运用起来的
小米Max3评测 巨屏优势影音神器续航是立足根本
什么是OEM,什么是ODM
Kubernetes RBAC:掌握权限管理的精髓
坚果pro2和魅族PRO7哪个好?最全面的测评让你不再选择困难
蔚来推出电动轿车ET7 提供两种购车方案
扬尘监测在线监控系统在环境监测的应用
如何在Linux中安装和使用duf命令
电视灭亡之说为时过早,OLED技术扭转全局
AMD Zen6升级CCD 2nm工艺:轻松256核心!
富士康获美政府30亿美元激励 建厂已近“板上钉钉”
ATX电源与BTX电源有什么区别