导读
在本文中,我们将讨论目标检测模型和objectness的基础知识。
什么是物体检测模型?
物体检测模型本质上,正如其名称所示,检测物体。这意味着给定一个图像,它可以告诉你物体在哪里,以及这个物体是什么。例如,在上面的图像中,我们有许多物体,并且使用物体检测模型,我们已经检测出不同的物体在图像中的位置。
这类模型有很多应用。举几个例子,物体检测在以下方面很有用:
自动驾驶汽车,可以检测到乘客、其他车辆、红绿灯和停车标志。
安保,模型可以探测到公共区域的枪支或炸弹,并向附近的警察报警。
总的来说,这类模型非常有用,在过去几年里,机器学习社区已经对它们进行了大量的研究。
物体检测中区域建议的介绍
首先,让我们了解一下物体检测模型是如何工作的。首先,我们必须给出一个物体的建议位置。我们把这个建议的位置称为我们感兴趣的区域,通常显示在一个边界框(也称为图像窗口)中。根据物体检测模型的类型,我们可以通过许多不同的方式来实现这一点。
朴素方法:我们将图像分割成多个部分,并对每个部分进行分类。这种方法效率低下是因为必须对每个生成的窗口应用分类网络(cnn),导致计算时间长。
滑动窗口方法:我们预先确定好窗口比例(或“锚”),然后滑过图像。对于每个窗口,我们处理它并继续滑动。与朴素方法类似,这种方法生成的窗口较多,处理时间也比较长。
选择性搜索:使用颜色相似度,纹理相似度,和一些其他的图像细节,我们可以用算法将图像分割成区域。虽然选择性搜索算法本身是耗时的,但这使得分类网络的应用需求较少。
区域建议网络:我们创建一个单独的网络来确定图像中感兴趣的区域。这使得我们的模型工作得更快,但也使得我们最终模型的准确性依赖于多个网络。
上面列出的这些不同选项之间有一些区别,但一般来说,当我们加快网络的处理时间时,我们往往会牺牲模型的准确性。
区域建议机制的主要问题是,如果建议的区域不包含物体,那么你的分类网络也会去分类这个区域,并给出一个错误的标记。
那么,什么是objectness?
objectness本质上是物体存在于感兴趣区域内的概率的度量。如果我们objectness很高,这意味着图像窗口可能包含一个物体。这允许我们快速地删除不包含任何物体的图像窗口。
如果一幅图像具有较高的objectness,我们期望它具有:
在整个图像中具有唯一性
物体周围有严格的边界
与周围环境的外观不同
例如,在上面的图像中,我们期望红色框具有较低的objectness,蓝色框具有中等的objectness,绿色框具有较高的objectness。这是因为绿色的框“紧密”地围绕着我们的物体,而蓝色的框则很松散,而红色的框根本不包含任何物体。
我们如何度量objectness?
有大量的参数影响图像窗口的objectness。
多尺度显著性:这本质上是对图像窗口的外观独特性的度量。与整个图像相比,框中唯一性像素的密度越高,该值就越高。
颜色对比度:框内像素与建议图像窗口周围区域的颜色对比度越大,该值越大。
边缘密度:我们定义边缘为物体的边界,这个值是图像窗口边界附近的边缘的度量值。一个有趣的算法可以找到这些边缘:https://cv-tricks.com/opencv-dnn/edge-detection-hed/。
超像素跨越:我们定义超像素是几乎相同颜色的像素团。如果该值很高,则框内的所有超像素只包含在其边界内。
超像素区域以不同颜色显示。请注意,框内的超像素大部分不会泄漏到图像窗口之外。因此,这个“超素跨界”值将会很高。
以上参数值越高,objectness越高。试着将上述参数与我们前面列出的具有高objectness的图像的期望联系起来。
如何衡量工业交换机的延迟?
镭拓科普1500w手持激光焊接机的配置参数应该是什么样
浅析无源滤波和有源滤波组成的滤波电路及运放反馈
解读我国新能源汽车产业发展情况
潘建伟在量子网络研究方面取得重要进展——实现基于冷原子的多节点量子存储网络
目标检测模型和Objectness的基础知识
紧凑型SMT变压器针对推挽式设计
PY25Q64HA串行接口闪存设备产品概述
RGB Networks亮相2011中国国际广播电视信息网络展览
PCB设计中如何使用跳线 如何设置跳线的要求
采用双摄的三星 Galaxy S9+ 内部长什么样?
恒功率超声波清洗发生器电源设计
360极速浏览器新版本的四大亮点
Dialog的DA14683创建于高性能平台上
如何选择合适的电梯IP五方对讲系统方案?
麒麟9010处理器相当于骁龙多少?麒麟9010和骁龙8gen2性能参数对比
智慧城市需求不如预期 IoT半导体营收预测下修
传感器产业化需要产业与行业协同发展
一加5曝光:骁龙835+6GB内存+前后双2.5D玻璃
如何将小型光伏系统与网格进行同步