代码生成:基于 AI 大模型的挑战与前景

使用 ai 通用模型来完成代码生成这类非常具体的任务可能会带来问题。人工智能生成的代码就像是陌生人的代码,它们可能并不符合你的代码质量标准。这种情况下,创建专业或专用的模型不失为一条出路。
luise freese 和 iona varga 在 2023 年的 ndc oslo 大会上探讨了 ai 模型的实践困境和伦理相关问题。
varga 提到,“人工智能”这个词给人一种智慧的感觉,虽然这个名字实际只是代表了这些模型的构建方式。以节点相连的形式模仿人脑中神经元与突触连接而成的网络,这类模型因此而得名“人工网络”或“人工智能”。
freese 补充道,抽象来说,计算机是完全依赖于或开或关的晶体管,通过这些开关的组合,我们得以操纵比特。由于晶体管之间没有相互的纠缠,这些开关最终会带来这样的结果:
因此,计算机并不会思考,不过是我们的人工智能算法赋予了它们个性和特征,比如“让我考虑一下”这类礼貌说辞。ai 仅仅是利用统计数据对事物进行预测、分类或组合。
varga 提到,ai 的问题在与使用极其通用的模型或是基础模型完成非常具体的任务。大语言模型(llm)的工作原理是先分析问题、创建一两个词语,再根据统计数据预测下一个标记的最佳匹配。此外,llm 本身是无法对事实进行核查的,因为这类模型的设计目的是生成而非验证。
如果我们试图建立一个能解决所有 ai 问题的 ai 模型,那么我们将会创造出一种自我放大的螺旋式下降,freese 补充道。若想实现螺旋式上升,那就应该少用基础模型,多用更为具体的模型,后者中有一部分实际就是搭建在基础模型之上的。
ai 或许能生成代码,但这些代码是否能安全地使用,是否能满足我们对质量的标准要求?varga 认为这些问题只能由真正的人类来回答,这一过程并不容小觑。归根结底,就像是代码的编写一样,调试陌生人的代码远比自己从头到尾参与其中的代码更为困难。
一般模型的理解能力也更为通用,这在代码生成问题上可能会带来问题,正如 varga 所解释的:
举例来说,react v17 或 v16 这些可能没有直接反应在模型的上下文中,但模型也能了解这些代码库。或许你会发现自己生成的一个函数中会混杂有两个版本的代码。
varga 认为,多数情况下 ai 都是解决问题的好帮手。但使用 ai 就意味着你要去检查、验证、修改、编辑或重写部分内容,而这一部分可能才是我们低估 ai 工具带来工作量的地方。
infoq 针对人工智能所带来的挑战问题采访了 luise freese 和 iona varga。
 infoq:什么因素会造成 ai 的失败?
iona varga: 一般来说,ai 并不是命中注定要失败的。我是医学物理出身的,我也见过很多优秀的 ai 工具,它们能出色地完成波弹性成像的实时剪切。
但由于虚假数据和扭曲事实问题的存在,这些结果并不完全可信。举例来说,川普就职典礼上,实际的到场人数是要少于最初公布的数据。试着问模型就职典礼的公园有多热闹,你大概会得到一个出乎意料的答案。但同样,数据的来源时至今日也有颇具争议的历史背景,它们可能会出于政治剧本或标准等原因而被修改。
 infoq:伦理道德如何才能帮助我们解决 ai 所带来的问题?
luise freese:伦理道德作为工具本身是帮不上太多忙的。伦理只是一种工作的方式,就像是 devops 一样。一旦你有了规划,知道该做什么了,“伦理道德”就是你对“完成”的定义。我所用的数据是否覆盖了所有产品使用相关的人或事?通过这些道德的检测,我们的工作方式将会在可访问性、包容性和避免偏见方面得到改善。
本文转载自infoq公众号

吴振洲自拍视频,真实在美受羁生活
宝马进军氢动力汽车:正研发 2021年登场
康复市场需求强烈,脑机接口相较其他方法康复效果最好
智嵌物联串口服务器与组态王软件通信演示
商汤绝影助力广汽传祺打造极“智”懂你的智能车舱
代码生成:基于 AI 大模型的挑战与前景
日本量子领域科技预算比2020年度增加约50%
采空区沉降监测系统的主要功能介绍
深度解读智能公交如何实现车路云协同
半导体IC制程中的各种污染物类型以及污染物的去除方法
环境可靠性试验通常应用在哪些行业
变配电系统智能化改造的必要性和方案配置
百度“文心一言软件”著作权获登记批准
艾迈斯欧司朗推出全新AS705x模拟前端系列,生命体征监测应用“小”有作为
专家分析认为台积电资本支出将创新高主要有6大原因
UJT移相触发电路
OPPOR17Pro拆解 整机设计结构严谨稳定性强
Altium Designer 24已发布 在PCB设计和数据连接领域将有突破性进展
服装店中的体感试衣镜将全新定义智能试衣
新唐Qi标准的无线充电方案的详细介绍