0 引言
近年来,rfid(radio frequency identification)技术在物流行业、制造业、资产管理、人员跟踪监控等多个领域得到广泛的应用,其基本原理是利用射频信号和空间耦合(电感耦合或电磁耦合)传输特性,实现对被识别物体的自动识别。rfid系统一般由读写器和电子标签组成,读写器通过无线通信方式获得标签信息,从而识别携带该标签的对象。因此,读写器性能对rfid系统功能的实现起着举足轻重的作用。
目前,对读写器所开展的测试包括一致性测试、通用性测试以及性能测试三个阶段。一致性测试是为了测试设备如标签、读写器是否符合epc global的标准,这样终端用户可以购买到经过认证的产品;通用性测试是为了测试某种设备与其他设备的兼容性操作;性能测试是为了测试读写器在某个具体环境、真实条件下的识读水平,以保证所有环节识读的准确率。iso/iec 18046定义了rfid设备的性能检测方法,包括对标签性能参数、速度、标签阵列、方向、单标签检测及多标签检测等标签性能检测方法,以及对读取距离、读取率、单标签和多标签读取等读写器性能检测方法。左中梁等在gtem小室中测试了uhf rfid系统的读写距离,分析了uhf rfid系统通信的受限因素是前向链路,从而根据前向链路信号的衰减推导了使用gtem小室进行uhf rfid系统读写距离测量的公式及方法;史玉良等在高速环境下对uhfrfid标签读取率进行了测试,并设计实现了1款直线导轨以模拟低速到高速的不同应用环境,研究标签的读取率与速度之间存在的对应关系。然而,这些方法主要针对的是读写器本身的参数对其读写性能的影响,对于具体的环境因素对读写器读写性能的影响研究较少。本文在现有物流分拣、混合生产智能制造生产线上,测试出了rru9806sr超高频台面式读写器漏读率,分析了实际生产线环境对漏读率的影响。
1 测试平台搭建与数据采集
1.1 rru9806sr超高频台面式读写器
rru9806sr超高频台面式读写器外形图及其接口定义如图1所示,支持符合iso18000-6c(epc c1g2)、iso18000-6b协议电子标签,可用于物流、个人身份识别、会议签到系统、门禁系统、防伪系统及生产过程控制等多种无线射频识别(rfid)系统。rfid读写器硬件电路由以下几部分组成:射频识别模块电路、微控制器电路、串行接口电路、射频收发电路、电源电路等,如图2所示。
图1 rru9806sr读写器外形图及接口
图2 读写器内部系统结构图
读写器通过天线发送一定频率的射频信号,当贴有电子标签的物体进入无线识别系统读写器的识读范围时,其天线将产生感应电流,电子标签获得能量被激活并向读写器发送自身的编码等信息,读写器接收到电子标签发射回来的电磁波信号后,经过处理得到电子标签存储的代码等信息,这些信息可以作为物体的特征数据被传送到计算机进一步处理。
1.2 测试平台的搭建
本文在现有物流分拣、混流生产智能制造生产线上搭建测试平台。该智能制造生产线可以实现生产线生产过程及工件加工的智能监控,相关控制软件可以显示工件到达的工位,并可以通过安装在生产线上的读写器以及读写头读取装有电子标签的工件的信息。本项目则将原有的高频读写器取下来,换上待测试的超高频读写器,为此需要对生产线少许改装,改装后的生产线如图3所示。
图3 测试平台
图3中,将待测读写器分别安装在生产线的四个工位,通过螺母螺丝调读写器托盘高度,达到读写器读写检测距离。将超高频电子标签安装在传送底座上,当工具通过读写器所在位置时,读写器以应答模式读取工件相关信息。
1.3 测试数据的采集
为了自动采集生产线上的读卡器读取工件数量,开发了一套数据采集软件,其软件开发流程图如图4所示。该软件按照功能可以划分成3部分:应用程序接口部分、读写器控制部分和数据处理部分。读写器控制部分主要包括控制射频模块、参数配置模块和协议处理模块。根据图4,采用c#语言开发出软件界面如图5所示。按下启动按钮,数据采集软件动态采集标签id号、到达工位数、到达时间及漏读率。图5所示为数据采集软件测试的部分数据。按下停止按钮,数据采集软件将测试数据保存到上位机。
图4 测试系统划分
图5 数据采集软件界面
2 实验结果及分析
启动生产线,运行平台,对数据进行采集。选取工位二和三的读写器进行分析,作出其漏读率变化曲线,如图6所示。
图6 漏读率曲线图
读写器二的漏读率总体较低,但是随着使用次数的增加,漏读率整体呈现增大的趋势,说明读写器本身性能(包括抗环境干扰能力)较差,不适于应用在精度要求高的场景。而读写器三恰好与读写器二情况相反,漏读率呈现递减的状态,但从变化曲线看得出其工作性能也不稳定。所以,对于这两台读写器需要对其内部影响其读写效率的参数进行优化,提高工作性能。
3 结论
本文在现有物流分拣、混合生产智能制造生产线上,测试出了在实际生产线环境对rru9806sr超高频台面式读写器漏读率。首先,在现有智能制造生产线上搭建了测试读写器硬件平台,接着开发了数据采集软件采集实际生产线上安装的标签数据,并计算出了漏读率。最后在matlab软件中求出了漏读率的分布图并求出了漏读率均方根值。所求漏读率即为读写器漏读率。求得了漏读率的分布图并求出了漏读率的分布特性表达式。
此测试方案简单易用,对读写器性能进行漏读率的分析,不需要花费较多的人力物力以及资金投资便可以检测读写器的一般性能,对工业级读写器在复杂环境应用方案和产品检测方面有借鉴作用。从测试的过程也可反映出rfid读写器以及电子标签对于现代各个行业都有很大的实用价值,而超高频读写器也将因其各种优势更加广泛的应用于各个行业。在本论文的基础上,后续研究工作将提出具体的改善方案来降低漏读率,对该读写器内部影响其性能的具体参数进行测试并优化,使其更好的用在实际环境中。
今日要闻:中国联通主导的南大西洋国际海底光缆全线贯通 云计算板块全线走强
DIC 2022主题发布丨同屏共振话显示,凝心聚势新未来
当BIM遇到VR又会有怎样的体验呢?
MEC进入大规模商用部署还需要应对哪些挑战
用于光伏面板划线操作移动平台
RRU9806SR超高频读写器漏读率测试,用于智能制造生产线
TDK荣获华为杰出核心伙伴奖
5G手机都双层主板?拆解发现荣耀V30主板是三层
中国智能音箱销售激增 2019年Q1销量同比增长500%
AI芯片的应用场景和发展趋势
应用Inspire 软件对齿轮系统进行多体动力学仿真分析
手写板感应方式
全球十大电容品牌排名表(四)
2020年法定货币将如何与数字去中心化货币协同发展
松乐智能装备(深圳)有限公司与瑞昌政府举行签约仪式
c语言运算符优先级规律
医疗废物信息化管理与传统管理模式对比
新型生物传感器将成为诊断和监测疾病的首选工具
区块链在疫情中还有什么潜能
汽车电子科学技术奖参评企业航盛介绍